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A reduced dynamical model of convective flows
in tall laterally heated cavities

B y A. Liakopoulos, P. A. Blythe and H. Gunes
Department of Mechanical Engineering and Mechanics, Lehigh University,

Bethlehem, PA 18015-3085, USA

Proper orthogonal decomposition (the Karhunen–Loève expansion) is applied to con-
vective flows in a tall differentially heated cavity. Empirical spatial eigenfunctions
are computed from a multicellular solution at supercritical conditions beyond the
first Hopf bifurcation. No assumption of periodicity is made, and the computed
velocity and temperature eigenfunctions are found to be centro-symmetric. A low-
dimensional model for the dynamical behaviour is then constructed using Galerkin
projection. The reduced model successfully predicts the first Hopf bifurcation of the
multicellular flow. Results determined from the low-order model are found to be in
qualitative agreement with known properties of the full system even at conditions
far from criticality.

1. Introduction

Construction of low-dimensional models of transitional and turbulent flows by reduc-
tion of the governing partial differential equations to minimal systems of ordinary
differential equations has attracted significant attention in recent years (Berkooz et
al. 1993). Low-dimensional models offer a compact description of the system dy-
namics, and they are potentially useful in designing, simulating, and testing flow
control systems. In general, the transformation of partial differential equations into
systems of ordinary differential equations can be accomplished by well-established
procedures. The method of weighted residuals, for example, has been successfully
used in conjunction with a variety of basis functions, such as splines (Liakopoulos
& Hsu 1984) or, more frequently, trigonometric functions and orthogonal polynomi-
als (Gottlieb & Orszag 1977). In practice, the infinite-dimensional representation is
truncated to a finite n-dimensional system. To ensure that the dynamical behaviour
described by the resulting finite-dimensional system corresponds to that of the full
problem, the required dimension n is typically high; a large reduction in n is re-
quired for the development of useful low-order models. This can be accomplished by
expanding the unknown functions in terms of basis functions that are constructed
specifically for each flow system and that reflect the behaviour of the flow in the
vicinity of specified values of the controlling parameters. A systematic procedure for
obtaining a set of optimal basis functions (Berkooz et al. 1993) is proper orthogonal
decomposition (POD), first proposed in fluid mechanics by Lumley (1967) as a tool
for the identification of coherent structures in turbulent flows. An efficient and cost-
effective method of applying proper orthogonal decomposition to large data sets was
developed by Sirovich (1987) who devised what has become known as the snapshot
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method. POD identifies the most energetic eigenmodes, thus enabling the compres-
sion of numerical or experimental data by retaining the small number of modes that
capture most of the fluctuation ‘energy’. The most energetic eigenmodes should con-
tain enough information for a satisfactory description of the flow dynamics. This
methodology has been applied to a variety of problems including: the dynamics of
coherent structures in the turbulent wall layer (Aubry et al. 1988), and the evolution
of three-dimensional coherent structures in a flat-plate boundary layer (Rempfer &
Fasel 1994). Deane et al. (1991) reported a low-dimensional model of two-dimensional
flow in a grooved channel, while Gunes et al. (1997) discussed low-dimensional repre-
sentations of transitional, buoyancy-driven flows in vertical channels. For a detailed
discussion of POD and its applications, see Berkooz et al. (1993).

In most applications, proper orthogonal decomposition has been carried out for
flows that are periodic in at least one spatial direction, and low-dimensional models
have been developed for some of these cases. Sirovich & Park’s work on Rayleigh-
Benard convection in a finite domain (Sirovich & Park 1990) is a notable exception.
These authors discuss proper orthogonal decomposition for convection in a low-
aspect-ratio domain with stressless (slippery) boundary conditions at fixed values of
the controlling parameters. The present paper explores the possibility of developing
POD-based low-order models of thermal convection in extended systems, where the
interplay between temporal and spatial instabilities is far more complex and interest-
ing. Specifically thermal convection in a tall laterally heated cavity is examined using
the exact (no-slip) flow boundary conditions along the enclosure walls. Furthermore,
an effort is made to explore the properties of the resulting low-dimensional model at
various forcing conditions. The combination of realistic flow and thermal boundary
conditions, with a large aspect-ratio geometry, is relevant to a variety of materials
processing and cooling applications.

For a Newtonian fluid, subject to the Boussinesq approximation, thermal convec-
tion in a rectangular cavity when the vertical boundaries are maintained at fixed but
distinct temperatures, and the upper and lower horizontal surfaces are adiabatic, is
governed by three dimensionless parameters: the aspect ratio A (height/width), the
Prandtl number Pr, and the Grashof number Gr (Batchelor 1954). At moderate Gr,
the base flow corresponds to a single unicellular state. Depending on the aspect ra-
tio and Prandtl number, both time-dependent and stationary bifurcations can occur
as Gr increases. For air-filled cavities of small aspect ratio, the primary instability
leads to oscillatory time-dependent flow (Paolucci & Chenoweth 1989). Calculations
by Lee and Korpela (1983) suggest that at values of A > 12.5 a stationary instability
will certainly precede the onset of oscillatory convection, and give rise to a steady
(time-independent) multicellular flow. Further increase in Gr leads to oscillatory
flow or a reduction in the number of cells. Detailed calculations of the supercritical
cell structure have been given by Chait & Korpela (1989) and by Liakopoulos et al.
(1990).

In this paper POD is applied to thermal convection in a tall differentially heated
cavity, and the possibility of developing low-dimensional models to describe the dy-
namics of multicellular flows is investigated. Results are presented for transitional
flow in an air filled cavity of aspect ratio A = 40. The spatial eigenmodes are de-
termined by the method of snapshots at Gro = 25000 and Pro = 0.71. A Galerkin
procedure is then employed to obtain suitable low-order dynamical models. Assum-
ing that the spatial eigenfunctions are weak functions of Gr, the properties of the
derived low-dimensional model are explored for values of Gr 6= Gro. This study is
carried out at Pr = 0.71.
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2. Full model

Two-dimensional thermal convection is examined in a cavity of aspect ratio A =
40. The side walls are maintained at uniform but distinct temperatures, while the
upper and lower horizontal walls are thermally insulated. Suitable dimensionless
variables are

(x, y) =
(x∗, y∗)

l
, t =

uc

l
t∗, V =

V ∗

uc
, P =

p∗

ρu2
c
, Θ =

T − T1

T2 − T1
, (2.1)

where uc =
√
βgl (T2 − T1), l is the cavity width, ρ is the fluid density, T1 and T2

are the cold and hot wall temperatures, β is the thermal expansion coefficient, and
g is the acceleration due to gravity. Note that since the analysis is concerned with
modelling the transitional flow regime (Gr > Gr∗ where Gr∗ denotes the Grashof
number at the onset of self-sustained oscillations), the characteristic velocity uc is
determined by balancing the inertial and buoyancy forces in the momentum equation
and the pressure is scaled by the dynamic pressure measure ρu2

c . It is hoped that this
scaling will represent the flow behaviour over a reasonable range of Grashof numbers.

In terms of the variables listed in (2.1) and, using the Boussinesq approximation,
the dimensionless governing partial differential equations take the form

∇ · V = 0, (2.2)
∂V

∂t
+ (V · ∇)V +∇P = Θj +

1√
Gr
∇2V , (2.3)

∂Θ
∂t

+ V · ∇Θ =
1

Pr
√
Gr
∇2Θ , (2.4)

where Pr = ν/α is the Prandtl number, Gr = βg(T2 − T1)l3/ν2 is the Grashof
number, ν is the kinematic viscosity, α is the thermal diffusivity, and j is the unit
vector in the vertical y-direction. For a rectangular coordinate system with the origin
at the midpoint of the left vertical wall, the associated boundary conditions are
V = 0 along all cavity walls, Θ = 1 at x = 0, Θ = 0 at x = 1, and ∂Θ/∂y = 0 at
y = ±1

2A.

3. Derivation of the low-order model

At some values (Pro, Gro) for which the flow and temperature fields are spon-
taneously oscillatory, M snapshots of each field are computed from the full model
described in the previous section. The values (Pro, Gro) are referred to as ‘design’
parameters or ‘design’ conditions. The time-dependent velocity and temperature
data are decomposed into time-averaged (u, v,Θ) and time-varying (u′, v′,Θ ′) parts,
where (u, v) are the components of V along the rectangular coordinate axes x and
y respectively.

Stationary empirical eigenfunctions (φk, ψk), are constructed from linear combi-
nations of the time varying parts of the field variables (Sirovich 1987), i.e.

φk(x, y) =
M∑
i=1

αkiV
′
i , (3.1)

ψk(x, y) =
M∑
i=1

αkiΘ ′i , (3.2)
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where the subscript i refers to the fluctuation fields obtained at t = ti. In (3.1) and
(3.2), αk denotes the kth eigenvector of the matrix eigenvalue problem

Cα = λα, (3.3)

where C is a M ×M matrix given by

Cij =
1
M

∫∫
V ′i · V ′j dΩ (3.4)

for the velocity field, and

Cij =
1
M

∫∫
Θ ′iΘ

′
j dΩ (3.5)

for the temperature field. Integration is over the spatial flow domain Ω .
Note that the matrix C is symmetric and positive semi-definite. Consequently, all

eigenvalues are real and non-negative and can be ordered such that

λ1 > λ2 > λ3 > . . . > λM .
Each velocity eigenvalue represents the contribution of the corresponding eigenmode
to the mean of the total fluctuation energy

E =
∫∫

(u′2 + v′2) dΩ ,

while each temperature eigenvalue represents the contribution of the corresponding
temperature mode to the mean of the total temperature fluctuation ‘energy’

EΘ =
∫∫

Θ ′2 dΩ .

Proper orthogonal decomposition offers an objective method for the identification
of the most energetic eigenfunctions, (φi, ψi), i = 1, 2, . . .Mc, where Mc is problem
dependent. The eigenfunctions are mutually orthogonal and, when properly normal-
ized, (φi → φi/

√
λi, ψi → ψi/

√
λi), they form an orthonormal basis.

The time-varying parts of the velocity and the temperature fields are expanded in
terms of the normalized eigenfunctions,

V ′ =
M1∑
k=1

ak(t)φk(x, y), (3.6)

Θ ′ =
M2∑
k=1

bk(t)ψk(x, y), (3.7)

where by taking into account the orthonormality conditions satisfied by the eigen-
functions, the temporal expansion coefficients ak(t) and bk(t) can be calculated from

ak(t) =
∫∫

V ′ · φk dΩ , k = 1, 2, . . . ,M1 (3.8)

and

bk(t) =
∫∫

Θ ′ψk dΩ , k = 1, 2, . . . ,M2. (3.9)

Expressions (3.6)–(3.9) are referred to as the reconstruction formulae.
Substituting (3.6)–(3.7) into the momentum and energy equations, (2.3) and (2.4),
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applying Galerkin’s method, and making use of the orthonormality property of the
empirical eigenfunctions, leads to a system of (M1 + M2) nonlinear ODEs for the
temporal expansion coefficients:

dak
dt

= Ak +
1√
Gr

Bk + Ckiai +
1√
Gr

Dkiai + Ekijaiaj +Rkibi, (3.10)

k = 1, 2, . . . ,M1,

dbk
dt

= Fk +
1

Pr
√
Gr

Gk +Hkiai +
1

Pr
√
Gr

Ikibi + Jkijaibj +Kkibi, (3.11)

k = 1, 2, . . . ,M2.

The coefficients in the above equations are related to various inner products among
the eigenfunctions and to certain properties of the mean flow. Specific results for
these coefficients can be obtained from the authors. Note that the velocity eigen-
functions are, by construction, divergence-free and that the continuity equation is
automatically satisfied.

Equations (3.10) and (3.11) are of the form ẋ = c+ Lx+N(x), where x denotes
the n-vector of the modal amplitudes, c is a constant n-vector, and L is an n by n
matrix that has contributions from the Laplacians in the full model equations and
from the interactions of the mean fields with the fluctuations. The nonlinear operator
N is quadratic in x, a typical outcome when the Galerkin method is applied to the
Boussinesq equations. Initial conditions for the design state are obtained by applying
(3.8) and (3.9) at t = 0.

4. Decomposition

The partial differential equations (2.2)–(2.4), together with no-slip boundary con-
ditions at all walls, isothermal conditions along the vertical walls, and adiabatic
conditions along the horizontal walls, are solved by a spectral element method. Im-
plementation of the method is based on Nekton, a program developed by Patera and
his co-workers for the simulation of steady and unsteady incompressible flow, includ-
ing heat and mass transfer. In the present simulations 170 spectral elements are used
and solutions are obtained for order of interpolants N1 = 4, 6, 8, 10. Increasing N1
from 8 to 10 does not result in any significant change for Gr 6 2.5× 104. Values of
the field variables at representative fixed locations and integrals of the field variables
over the entire domain change by less than 0.9% at Gr = 2.5 × 104. The results
reported in this article were obtained for N1 = 10.

Proper orthogonal decomposition is carried out on 20 snapshots (M = 20) of the
oscillatory solution obtained for A = 40, at design conditions Pr = Pro = 0.71
and Gr = Gro = 2.5 × 104. The snapshots are equally spaced over the oscillation
period. Representative instantaneous streamline and isotherm patterns are shown in
figure 1a. Table 1 lists the six largest eigenvalues for the velocity and temperature
fields. All eigenvalues are normalized so that

∑
λi = 1. The cumulative contribution

of the six most energetic eigenmodes to the total flow and temperature fluctuation
energy are listed in the third and fifth columns of table 1. As can be seen from the
table, the dominant velocity mode contributes 61.1% to the fluctuation energy, while
the dominant temperature mode contributes 72.5% to the fluctuation ‘energy’ of the
temperature field. Note that the four most energetic modes capture 99.98% of the
total fluctuation energy for both the velocity and the temperature fields.
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Figure 1. (a) Representative instantaneous streamlines and isotherms, (b) velocity
eigenfunctions (streamlines), (c) temperature eigenfunctions (isotherms).
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Table 1. Eigenvalues of the six most energetic modes and their respective contribution to the
total flow and temperature fluctuation ‘energy’

velocity eigenvalues temperature eigenvalues︷ ︸︸ ︷ ︷ ︸︸ ︷
mode eigenvalue cumul. energy eigenvalue cumul. energy

1 0.61103 61.103 0.72516 72.516
2 0.35078 96.181 0.26079 98.595
3 0.02426 98.607 0.01140 99.735
4 0.01371 99.978 0.00245 99.980
5 0.136× 10−3 99.992 0.111× 10−3 99.991
6 0.068× 10−3 99.998 0.655× 10−4 99.998

a2

b3

a3

b4

a1 a1

b1 b1

Figure 2. Phase space trajectories at design conditions. Solid line: low-dimensional model;
dashed line: direct projection of snapshots on the computed eigenfunctions.

Streamlines and isotherms for the four most energetic eigenmodes are depicted in
figures 1b, c. Organized spatial patterns in the most energetic eigenfunctions occur in
the middle part of the cavity where the fluctuations are most vigorous. In addition,
the eigenfuctions are centro-symmetric. Some minor violations of these conditions are
evident, especially in the higher modes where computational noise masks the spa-
tial symmetry relations. Steady solutions of (2.2)–(2.4) for the boundary conditions
considered in this study are also centro-symmetric (Gill 1966).

5. Low-order model

The eight-equation model ((3.10)–(3.11), M1 = M2 = 4) has been studied in de-
tail. At design conditions, the initial-boundary value problem is solved by a fourth
order Runge–Kutta method. For these conditions, a limit cycle is reached after all
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(a
ia

i+
b ib

i)1/
2

Figure 3. Fixed points of the low-dimensional model. Norm for M1 = M2 = 4. Black lines,
stable fixed points; grey lines, unstable fixed points.

initial transients die out. Oscillation frequencies predicted by the low-order model are
in excellent agreement with those obtained from the reconstruction formulae (3.8)
and (3.9). Figure 2 depicts trajectories of the modal amplitudes in projections of the
phase space. Clearly the temporal expansion coefficients predicted by the low-order
model exhibit oscillations of slightly different amplitude than those calculated by di-
rect projection of the input data onto the computed eigenfunctions. The equilibrium
points (critical points, steady solutions) of the low-order model are found by setting
the right-hand side of (3.10)–(3.11) to zero. Using a Newton–Raphson method, with
random initial guesses for the solution components, several steady solution branches
are found in the interval 1 6 Gr 6 105. The stability of a steady solution is then
determined by calculating the eigenvalues of the associated real non-symmetric Ja-
cobian matrix evaluated at the critical point. Equilibrium points with norm smaller
than 6 in the interval 1 6 Gr 6 105 are presented in figure 3. Black lines repre-
sent stable fixed points while gray lines correspond to unstable fixed points. For
Gr < 1.85× 104 a unique branch of stable fixed points is found. This is the primary
solution branch and is denoted by A in figure 3, where the norm (aiai + bibi)1/2 is
plotted against Gr. For Gr > 1.85 × 104 multiple solutions are found. Two stable
steady solutions exist for 1.85×104 6 Gr 6 2.48 × 104. At Gr = Grc = 2.48 × 104

the fixed point on the primary branch undergoes a Hopf bifurcation which marks
the onset of periodic oscillations in time. For 2.48×104 6 Gr 6 3.49× 104 one stable
steady solution (branch B) is found, while for Gr > 3.49 × 104 two stable steady
solutions exist (branches B and C). Note that the upper limit of Gr in figure 3 cor-
responds to (Gr −Grc)/Grc ≈ 4, where Grc denotes the value of Gr at the onset of
oscillations.

A systematic quantitative comparison between the full model and the low-dimen-
sional model (LDM) predictions at off-design conditions is beyond the scope of this
paper. Direct numerical simulation of the early transition process in the extended
system under study is prohibitively expensive. Hysteresis effects make the determi-
nation of all states very complex. However, even far from design conditions, the LDM
exhibits properties that are qualitatively in agreement with the full model results,
for example, it predicts a unique stable steady solution for small values of Gr. In
addition, it indicates the existence of a second stable steady solution before the first
Hopf bifurcation point, in agreement with the fact that for A = 40 and Pr = 0.71
the first instability is a stationary instability. Further, for high values of Gr the LDM
predicts multiple steady stable solutions, in agreement with the existence of multiple
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stationary multicellular solutions, characterized by distinct numbers of cells, that are
found in the flow system. At very high values of Gr the LDM exhibits chaotic be-
haviour. No claim of quantitative agreement far from the design conditions is made
here but the qualitative comparison is encouraging. Obviously, the present approach
requires that the empirical eigenfunctions be only weakly dependent on the normal-
ized Grashof number (Gr − Grc)/Grc. This point is of considerable interest, and
further analysis is certainly required. Extensions of the LDM to include a depen-
dence on the normalized Grashof number is possible but, because of the extensive
numerical work needed, it is deferred for future study. The present paper is intended
as a preliminary investigation of the properties of the LDM near design conditions.

6. Conclusions

A POD-based low-dimensional model of thermal convection in a laterally heated
rectangular enclosure has been presented. Appropriate nondimensional variables are
defined by balancing inertial and buoyancy effects. The POD eigenfunctions, com-
puted at slightly supercritical conditions, are centro-symmetric and provide a basis
for the approximation of the velocity and temperature fluctuations required in the
Galerkin projection. Frequency and amplitude predictions based on the developed
low-dimensional model are in good agreement with the full model solutions at de-
sign conditions. Far from design conditions, the model exhibits properties that are
qualitatively in agreement with the solutions of the partial differential equations.
Obviously, the low-dimensional model is not expected to reproduce all properties of
the full model solutions, and its ability to reproduce specific flow aspects is restricted
to some range of the controlling parameters. Determination of this range is beyond
the scope of this work, but the initial results already obtained are encouraging.

This work was partly supported by NASA/LeRC under contract NAG3-1632.
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