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Reduced dynamical models are derived for transitional flow and heat transfer in a periodically
grooved channel. The full governing partial differential equations are solved by a spectral element
method. Spontaneously oscillatory solutions are computed for Reynolds numbe€30Reand

proper orthogonal decomposition is used to extract the empirical eigenfunctions=d83B.e750,

1050, and P+0.71. In each case, the organized spatio-temporal structures of the thermofluid system
are identified, and their dependence on Reynolds number is discussed. Low-dimensional models are
obtained for Re=430, 750, and 1050 using the computed empirical eigenfunctions as basis functions
and applying Galerkin’s method. At least four eigenmodes for each field variable are required to
predict stable, self-sustained oscillations of correct amplitude at “design” conditions. Retaining
more than six eigenmodes may reduce the accuracy of the low-order models due to noise introduced
by the low-energy high order eigenmodes. The low-order models successfully describe the
dynamical characteristics of the flow for Re close to the design conditions. Far from the design
conditions, the reduced models predict quasi-periodic or period-doubling routes to chaos as Re is
increased. The case P7.1 is briefly discussed. €997 American Institute of Physics.
[S1070-663(197)00303-9

I. INTRODUCTION ior of the system in the vicinity of some values of the con-
trolling parameters. A rigorous methodology for obtaining a
There is evidence that certain thermofluid systems exset of optimal basis functions is the Proper Orthogonal De-
hibit chaotic behavior through the nonlinear interaction of acomposition(POD), or method of empirical eigenfunctions,
small number of degrees of freedom and that the early stagést introduced in fluid mechanics by Lumfyas a tool for
of the transition process can be identified in phase space liyie extraction of coherent structures in turbulent flows. The
low-dimensional dynamical behavior. This observation pro-snapshot version of PGPprovides an efficient way of ex-
vides the basis for the construction of low-order modelstracting the empirical eigenfunctions of large data sets. POD
(LOMs) describing the dynamics of transitional flows. Low- identifies the most energetic eigenmodes and enables us to
order models replace the system of governing partial differcompress numerical or experimental data by retaining a
ential equationgPDEs, infinite-dimensional systeinsith a  small number of such modes. These modes store the infor-
relatively small set of ordinary differential equatiof@DEs, mation necessary for accurate dynamical decomposition of
finite-dimensional systems Low-dimensional dynamical time-varying fields and, when appropriately combined, they
models have been reported for the description of coherergystematically identify the dynamic#bpatio-temporal co-
structures in the wall region of a turbulent boundary Idyer, herent structures. A large number of POD applications for
Rayleigh—Benard convectidnjsothermal grooved channel analysis and postprocessing of experimental data has been
flow and flow past a cylindet transitional flat-plate bound- reported, e.g., Glauser and Geotgd,u and Smith*> and
ary layer? free convection in vertical channét§,and heat Bonnet and Glauséf. For an overview of POD and its ap-
transfer by forced convection in a periodically groovedplications, see Sirovict and Berkoozt al®
channel’® The stability and heat transfer characteristics of flow in a
PDEs can be transformed into systems of ODEs by well-
known procedures, e.g., the method of weighted residuals.
This approach has been successfully applied using a variety
of basis functions, e.g., trigonometric functions, orthogonal
polynomials? or spline functions®*In general, these meth- |
ods lead to large systems of ODEs. Low-dimensional dy- —
namical models may be developed by expanding the un- —
known functions in terms of basis functions that are

constructed for each system separately and reflect the behav- chip chip chip chi
module module module module
i-2 i-1 i i+l
dCorresponding author. Telephon@10) 758-4929; Fax(610 758-6224;
Electronic mail: al03@Ilehigh.edu FIG. 1. Grooved channel configuration.
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grooved channel have been studied by many 3 0 - b
researcher$-2?? The configuration involves sharp corners g
leading to flow separation and temporal hydrodynamic insta- 50 - .
bilities even at low or moderate values of Reynolds number 0 T
(Re). The flow is time independent when RRe,, and ex- 0 2 4 6 8 10
hibits self-sustained oscillations for R®e., where Re de- Number of modes retained

notes the critical Reynolds number at the onset of temporal
instability. The isothermal case has been analyzed usin IG. 4. Contribution of _eigenvalues to the total flow and temperature fluc-
POD by Deaneet al® and Saharet al’ Sahanet al® in- ation energy(a) Velocity modes,b) temperature modes, R0.71.
cluded temperature effects and developed low-order models
of the thermofluid system at slightly supercritical conditions
(Re=430.
In this paper, the snapshot version of proper orthogonal
decomposition has been applied to transitional flow and hed?DEs is derived by using Galerkin projection. The ability of
transfer in the grooved channel shown in Fig. 1. This conlihe reduced models to describe the dynamics of the flow and
figuration is an idealization of channel geometries that aptemperature fields is examined.
pear frequently in cooling of electronic equipment where the
protrusions are formed by chip modules. The channel geom-
etry is assumed to be periodic and entrance effects are igr. FULL MODEL: FORMULATION AND SOLUTION
nored. POD is performed at £0.71 and Re-430, 750, and METHOD

1050. The case Pr7.1 and Re=430 is briefly discussed in . ) )
Sec. V. At these values of Re the flow is time periodic. For ~ Figure 1 shows the grooved channel configuration under

each Reynolds number, a low-dimensional set of nonlineastudy. The velocity field is assumed to be incompressible and
periodically fully developed? Neglecting buoyancy, viscous

dissipation, and energy generation, the partial differential
equations governing constant-property, time-dependent flow,
and heat transfer can be written in dimensionless form as
follows:

Conservation of mass:

V-V=0, 1

Conservation of momentum:

oV 1 )

5 T(V-V)V=—VP+  VAV+F, )
FIG. 3. Computational mesh. 44 spectral elements each with &lloca- )
tion points. Conservation of energy:
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FIG. 5. (a) First and second velocity empirical eigenfunctiofis Re=430,
(i) Re=750, (iii) Re=1050.(b) Third and fourth velocity empirical eigen-
functions. (i) Re=430, (ii) Re=750, (iii) Re=1050. (c) Fifth and sixth
velocity empirical eigenfunctionsi) Re=430, (i) Re=750, (iii ) Re=1050.
(i)

(iii)

9 L v.ve V20 3) vl po P g 17T dF—
- : = : =—, P= , 0= , and F=—»,
at Re Pr U ref pUZ, To—Te. Uz,

where 2, denotes the width of the bypass part of the chan-
nel (see Fig. 2, p is the fluid densityp is the static pressure,
In writing the governing equations in this form, the di- T denotes the local temperature, ahdenotes all forcing
mensionless variables have been defined as contributions. The dimensionless parameters appearing in
Egs. (2) and (3), the Reynolds number Re, and the Prandtl
number Pr, are defined as

X y Uref u U h 14
X=—, Y=, t=—1t* U=-—, Re= 1  p=_
hy hy hy U et v '
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TABLE I. The ten largest normalized eigenvalues and their respective contributions to the total flow fluctuation
energy.

Re=430 Re=750 Re=1050
F.=0.0053F,=0 F«=0.0035F,=0 F.=0.0028F,=0

Normalized Cumulative Normalized Cumulative Normalized Cumulative
Modes eigenvalue energy, % eigenvalue energy, % eigenvalue energy, %

1 0.513 95 51.39 0.511 59 51.16 0.500 67 50.07
2 0.467 41 98.14 0.456 23 96.78 0.45121 95.19
3 0.008 29 98.96 0.012 29 98.01 0.014 99 96.69
4 0.007 67 99.72 0.01131 99.14 0.014 31 98.12
5 0.001 17 99.84 0.002 93 99.43 0.007 02 98.82
6 0.00113 99.95 0.002 91 99.73 0.006 67 99.48
7 0.000 16 99.97 0.000 85 99.81 0.00179 99.67
8 0.000 15 99.99 0.000 73 99.88 0.001 31 99.80
9 0.000 04 99.99 0.000 34 99.91 0.000 65 99.86
10 0.000 03 99.99 0.000 29 99.94 0.000 47 99.91

where v denotes the kinematic viscosity, is the fluid ther-  field variables at representative fixed locations and integrals
mal diffusivity, andU =3/2U,, whereU,, is the average of the field variables over the entire domain change by less
velocity at a channel cross section. We consider the flow fathan 0.6%. Results are presentedtigth,=0.75,1,/h;=5.0,
from the channel entrance, and taking into account the spd»/h;=3.0 (see Fig. 2 For these parameters, spontaneous
tial periodicity of the channel, we solve the governing equa-self-sustained oscillations appear at.R800.

tions in one computational module by imposing periodic
boundary conditions in the streamwise directisae Fig. 2

The remaining boundary conditions considered in this stud)(”
are: (i) no slip conditions at the solid—fluid interfaced,)

uniform temperature distribution along the top channel wall  The time-dependent data obtained by direct numerical
(T=T.=Teow as well as along the protruding surfaces simulation at a supercritical Reynolds numigee>Re.) are

(T=Th=The), andiii) adiabatic conditions along the bot- first decomposed into time-averagdd®) and time-varying
tom wall segment between the protruding modulese Fig. (v’,@’) parts:

2).

Equationg1)—(3) with the corresponding boundary con-
ditions are solved by a spectral element metfotimple-
mentation of the numerical method is based on Nekton, a  V(X.D)=V(X)+V'(X.1),
computer program developed by Patera and his co—wcﬁ‘kers
to simulate steady and unsteady incompressible fluid flow,
heat, and mass transfer. In our simulations, 44 two- — ,
dimensional spectral elements were ugséde Fig. 3. Nu- OX.H=0(X)+ 0" (X.1).
merical solutions were obtained for order of interpolants,Then, the empirical eigenfunctions are constructed by lin-
N=4, 6, 8, 10, and 12. Increasind from 8 to 10 or 12 early combining the time-varying parts of the field
results in no significant changes in the solution. Values of thezariablest®

DEVELOPMENT OF LOW ORDER MODELS

(4)

TABLE II. The ten largest normalized eigenvalues and their respective contributions to the total temperature
fluctuation “energy” (Pr=0.71).

Re=430 Re=750 Re=1050

Normalized Cumulative Normalized Cumulative Normalized Cumulative
Modes eigenvalue energy, % eigenvalue energy, % eigenvalue energy, %

1 0.497 70 49.77 0.491 61 49.16 0.474 87 47.49
2 0.481 20 97.89 0.469 38 96.10 0.451 76 92.67
3 0.008 88 98.78 0.01371 97.47 0.019 92 94.66
4 0.008 57 99.64 0.013 07 98.77 0.019 09 96.56
5 0.001 58 99.79 0.004 46 99.22 0.012 51 97.81
6 0.001 53 99.94 0.004 27 99.65 0.012 09 99.02
7 0.000 21 99.97 0.001 07 99.75 0.002 75 99.30
8 0.000 20 99.99 0.001 03 99.86 0.002 60 99.56
9 0.000 03 99.99 0.000 43 99.90 0.001 33 99.69
10 0.000 03 99.99 0.000 40 99.94 0.001 07 99.80
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FIG. 6. (a) First and second temperature empirical eigenfunctigss-
therms, Pr=0.71. (i) Re=430, (ii) Re=750, (iii) Re=1050.(b) Third and
fourth temperature empirical eigenfunctiofisothermg, Pr=0.71. (i) Re
=430, (i) Re=750, (iii) Re=1050.(c) Fifth and sixth temperature empiri-
cal eigenfunctiongisotherm$, Pr=0.71.(i) Re=430, (ii) Re=750, (iii) Re
=1050.

(i)

(iif)

while for the temperature field

M
¢k<X>=§1 a V] (X)), wk<X>=i§13ki®(<x,ti>, (5)

where oy (B,) denotes thekth eigenvector of the velocity cmn:i J 0/ (Xt O (X,t,)dQ. (7)
(temperaturg correlation matrix, andM is the number of M Jo
shapshots. For the velocity field, the elements of the correla-
tion matrix C are given by
The eigenvalues of matri€ and the empirical eigenfunc-
tions, Eq.(5), have the following properties:'8

1 (@ The eigenvalues,,,, m=1,2,...M, are real and non-
CngM fQVr'n(X,tm)'Vé(X,tn)dQ, (6) negative and they are ordered as\;=\,

2)\32"‘2)\’\/' 20
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FIG. 7. Temporal expansion coefficients computed by direct projection of snapshots on the eigenfunctiongl .Fa) Re=430, (b) Re=750, (c) Re=1050.

(b) Each eigenvalue represents the fluctuation “energy” My

that the corresponding eigenfunction contributes to the  V'(X,t)= 2 a, (1) d (X),

flow (temperaturgfield. k=1 )
(c) The eigenfunctions are orthogonal to each other and, M,

after normalization, form orthonormal bases, 0'(X,t)= 2 bi(t) t(X),

k=1
f‘bi'(bde:‘sija f i dQ =5 . (8)
Q Q where ¢, (1) denotes théth eigenfunction for the velocity

(d) The velocity empirical eigenfunctions are divergence(temperaturgfield andM,, M, denote the number of modes
free (since the flow is incompressible retained in the expansions. When few modes capture most of
the fluctuating “energy,” we seled!;<M andM,<M in
order to keep the dimensionality of the reduced model low.
The time-varying parts of the velocity and temperature  Substituting Eqg.(9) into Egs. (2) and (3), applying
fields can be expressed in terms of the normalized eigenfun&alerkin method, and making use of the orthonormality
tions, property of the empirical eigenfunctions, we obtain a system
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ary conditions and that for periodic boundary conditions
there is no contribution of the pressure term in Edf) (see
Deaneet al3).

IV. RESULTS FOR Pr=0.71
t=T/6

A. Eigenvalues

Twenty snapshot§M =20), equally spaced over one
cycle, were used in the proper orthogonal decomposition.
IncreasingM has negligible effect on the results. The ten
largest eigenvalues and their cumulative contribution to the
flow and temperature fluctuation “energy” are listed in
Tables | and Il. The eigenvalues are normalized by requiring
2\i=1 and they are ordered based on their magnitude. For
the values of Re considered in this study the eigenvalues
occur in pairs. The eigenvalues belonging to a pair have
approximately equal magnitude.

For Re=430 the first velocity modal paiffirst and sec-
ond velocity eigenmodescaptures 98.1% of the total flow
fluctuation energy. The cumulative contribution of the two
most energetic modal pairs is 99.7% while the three most
FIG. 8. Reconstructed temperature spatio-temporal structure€).Pt. (a) energetic pairgsix largest V.eIOCIIy eigenvalupsontain a.l_

4., (b) &, Re=430, T=period of oscillation. most the total flow fluctuation enerdgee Table | and Fig.
4(a)]. As Re increases, the percentage of energy contained in
the first two modesthe first modal pajrdecreases while the
relative contribution of the third and fourth modes to the

of nonlinear ODEs for the eXpanSion CoefﬁCiea‘&t) and total fluctuation energy increasé&e Tab|e)|

by (t): Turning to the energy distribution among temperature
modes, Table Il shows that, as Re increases from 430 to
1050, the contribution of the first and second temperature
modes decreases while the third and fourth modes gain

ﬂ:AkJr 1 B+ Cya + 1 Dya+Eqaa . share. The drop in the contribution of the first temperature

dt Re Re 1= modal pair is significantly higher than the drop in the contri-
bution of the first velocity modal paicompare Tables | and
k=1,2,...My, (10 II). As a consequence, more modes are necessary to capture
the same percentage of the temperature fluctuation energy as

Re increases. For Ret30, four modes retain 99.6% of the

entire fluctuation energy while for Re750 and Re=1050,

t=T72

t=5T/6

db, 1 1 the same modes capture only 98.8% and 96.6% of the fluc-
gt T Re prCk T Hyiai + Kyib; + Re P Prl—kibi tuation energy, respectively. Note, however, that the first six
modes contain more than 99.0% of the fluctuating energy in

+Myab;, k=1,2,...M;. (1) all three casefsee Table Il and Fig.®)].

The coefficients appearing in the above equations arg - Bigenfunctions

related to the various inner products among the eigenfunc- The empirical eigenfunctiong; and ¢, i=1,2,...,6 are
tions and/or mean flow and temperature fields. Specific reshown in Figs. 5 and 6 for Re430, 750, and 1050. The two
sults for these coefficients can be obtained from the authorsnost energetic eigenfunctiokis=1,2) contain the large scale
The integrals required in POD and in the Galerkin projectionfeatures of each field while higher modés lower energy
have been carried out using Gauss quadrature on the Gauskevel) capture the small scale features of the fidiclsmpare
Legendre—Lobatto nodes on which the input data are knowrFig. 5(a) with Figs. §b)—5(c) and Fig. &a) with Figs. 6b)—
Carrying out the required integrations by conventional nu-6(c)]. The eigenfunctions occur in pairs(¢,,d,),
merical quadrature methods leads to considerable deviatiorighs,eb,),... 1, 4),(3,8,),-- . Within each pair the eigen-
when low spatial resolutioismall N) solutions of the full  functions are phase shifted by approximately a quarter wave-
model are used. Note that E(LO) is independent of the length in the bypass region of the channel.

temperature field since we consider incompressible flow, At Re=430, large scale features (gh,,¢,) cover almost
constant fluid viscosity, and buoyancy forces are neglectedhe whole bypass region extending slightly to the groove
Note also that expansior{9) satisfy the appropriate bound- portion of the channdlFig. 5(a), case ]. Small scale features

Phys. Fluids, Vol. 9, No. 3, March 1997 Sahan, Liakopoulos, and Gunes 557

Downloaded-07-Jan-2010-t0-194.177.202.252.~Redistribution-subject-to-AlP-license-or-copyright;~see=http://pof.aip.org/pof/copyright.jsp



(a)

0.7 T 0.7 -
0.5 0.5
0.3 0.3
a(t) 0.1 C b(t) 0.1 [
-0.1 0.1 1
-0.3 -0.3
05 I -05
07 I I I I 0.7 I I I I
249 251 253 255 257 259 249 251 253 255 257 259
t t
(b)
0.7 T T T 0.7 [ T ]
0.5 0.5
0.3 0.3
_ 1
-0.1 0.1 1
03 -0.3
I B b 4
-0.5 05 | 1 ]
07 L | 1 | | ] 07 1 | 1 |
243 245 247 249 251 253 243 245 247 249 251 253
t t
()
0.7 T T T 0.7 r .
0.5 0.5
0.3 0.3
-0.1 -0.1 I
03 : -0.3
05 -0.5
07 -0. I I I i
246 248 250 252 254 256 246 248 250 252 254 256

1 t

FIG. 9. Temporal expansion coefficients computed by the low-order models at design conditiofs,=Rr.71, M, =M,=4. (a) Re=Rg=430, (b)
Re=Re,=750, (c) Re=Reg=1050.

in the second and third modal pairs are located in the sheaigenfunctions is shown in Fig. 6. The large scale structures
layer formed at the intersections of the bypass and groovepresent in the first modal paii/;,i¢») shrink slightly as Re
regions, and even smaller scale features appear in the uppiecreasegFig. 6(@)], while the secondFig. 6(b)] and third
portion of the bypass region and the lower portion of the[Fig. 6(c)] modal pairs gain energy and their characteristic
grooved regioriFigs. §b) and Jc), case ]. As Re increases, closed isotherm structures become bigger in size. For Re
the small scale features gain in energy and they become more430 and Re-750, the small scale structures {@s,i)
visible in the plots of(¢s,¢,) and (¢s,¢) at Re=750 and  form three layer patterns in the bypass region of the channel.
Re=1050[see Figs. &) and 5c), cases ii and iifi. Note that

the decrease in the relative contribution of the first modal

pair to the total fluctuation energy budget does not Signifi-TABLE Ill. Critical Reynolds number as predicted by various LOMs.

cantly effect the appearance of the first and second eigen- Re at the onset of
functions[Fig. 5a), cases i—ii]. However, as Re increases, Model oscillations
small scale features become bigger in size, stretch through —

the middle and groove portions of the channel, and gain in Lgmm‘ ml;,\'\/l/lz;j g;g
fluctuation intensitysee Figs. &) and 5c)]. LOMae Ma—M.—8 350

The effect of Reynolds number on the temperature

558 Phys. Fluids, Vol. 9, No. 3, March 1997 Sahan, Liakopoulos, and Gunes

Downloaded-07-Jan-2010-t0-194.177.202.252.~Redistribution-subject-to-AlP-license-or-copyright;~see=http://pof.aip.org/pof/copyright.jsp



0.10
0.06
0.02
-0.02
-0.06

-0.10

0.5
05 03 -01 01 03 05 05

b

43 -01 01 03 05
b2

0.10 0.10

0.06 0.06
0.02 0.02
-0.02 -0.02

-0.06 -0.06

of0L—1 1
05 03 -01 01 03 05

b

0.10
05 03 -01 01 03 05

bl o)

FIG. 10. Comparison of low-order model predictions with full-model results
for Re£Reg), and P=Pr,=0.71. Solid line:(LOM,39, M;=M,=4) predic-
tions for Re=750. Dotted line: Full model results for R&50.
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FIG. 12. Comparison of low-order model predictions with full-model results
for Re#Re, and Pr=Pry=0.71. Solid line:(LOM p59, M;=M,=4) predic-
tions for Re=750. Dotted line: Full model results for R&50.

At Re=1050, these structures have merged to form a twoC. Spatio-temporal structures

layer pattern of larger and more energetic structUreg.

The temporal expansion coefficients, obtained by direct

6(b)]. Thus, as Re increases, significant changes in the spgrojection of the input velocity and temperature data on the
tial characteristics of the temperature eigenfunctions are olcomputed eigenfunctions, are plotted in Fig. 7. Note that, as
served in accordance with the substantial redistribution oéxpected, the amplitudes of the temporal expansion coeffi-
fluctuation energy among the six most energetic temperatureients increase as Re increases. The temporal expansion co-

eigenmodes.
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FIG. 11. Comparison of low-order model predictions with full-model results
for Re#Re, and Pr=Pry=0.71. Solid line:(LOM,35, M;=M,=4) predic-
tions for Re=1050. Dotted line: Full model results for R&050.
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efficients corresponding to a pair, i.ea,(ay), (as,a4),
(by,by), (bs,b,), etc., are phase shifted by a quarter of a
period. We have seen in the previous section that the com-
puted eigenfunctiongstationary spatial structurealso come

in pairs with a phase shift of approximately a quarter wave-
length in the bypass portion of the channel. Noting that the
producta; ¢» (no summatioprepresents a standing wave and
recalling that when two standing waves are out of phase by a
quarter period both in time and space, a travelling wave is
formed?® we may define for the problem at hand dynamical
(spatio-temporal coherent structures of velocityé,,(X,t),

and temperature;,(X,t), as follows:

2
§1<x,t>=§1 a(t) i(X),
4
§2<x.t>=§3 ai(t) i(X),..., (12)
2
§1<x,t>=§1 bi(t) i(X),
4
§2<x,t>=§3 bi(t) %i(X), ..., (13
Sahan, Liakopoulos, and Gunes 559
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FIG. 13. Computed time series and phase space portraits of temperature expansion coefficients €, gn M,=M,=4), Pr=Pr,=0.71. (8
Re=5000, (b) Re=5500.

and identify them approximately as traveling waves. Theequations. However, enough modes need to be retained so
evolution of £;(X,t) and £,(X,t) is shown in Fig. 8 for Re that the field variables are reconstructed accurately, most of
=430. Note that a pair of stationary eigenfunctions contairthe flow and temperature fluctuation energy is captured, and
information on the typical shape of the corresponding dythe potentially important information hidden in the small
namical (spatio-temporal coherent structure since each scale features of higher modes is not lost. In practice, al-
eigenfunction can be considered as a coherent structure attﬁ’ough the reconstruction error in E(@) decreases as the
specific instant in time. number of retained modes increases, increasing the number
of modes in the low-order model may not improve its per-
formance due to the inevitable noise present in the computed
In developing a low-order model it is desired to keep ashigh order eigenfunctions. Recall that, in contrast to the
few modes as possible in the system of ordinary differentiaproper orthogonal decomposition and reconstruction proce-

D. Low-order models
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dures, the Galerkin projection requires the computation of 0 : ,
spatial derivatives of the eigenfunctions, a process that leads
to noise amplification.

E. Low-order model predictions at “design”
conditions

“log |g3|

In applying the procedure described in Sec. lll, the input

time-dependent data are calculated at some values of the 0 F

controling parameters ReRe, and Pr=Pry,. We refer to £1=0.0970

these parameters as design parameters or design conditions. f2=0.1710

In this paper, emphasis is given to airflgRr=Pr,=0.71) at f1/fy=05672

Rq)=430, 750, and 1050. The case=fr,=7.1 is briefly 1505 o 02 03 04 05
discussed in Sec. V. For each case, Ed6) and (11) are £

integrated numerically using a fourth order Runge—Kutta
solver. The temporal expansion coefficients calculated based , _
on the three low-order models developed a-R&30, 750, :\:A'G; &4':'\2";‘92'2(;? i’fOFfl“”er transform b(t) at Re=5500. (LOM s,

and 1050 withM,=M,=4 are shown in Fig. 9 after all = > o

transients have died out. These are limit cycle solutions as

can be easily verified by plotting the orbits in the state space.

These predictions are in very good agreement with the ex- gqr higher values of Re the solutions of LOMs undergo
pansion coefficients obtained by direct projection of the fully series of bifurcations leading to chaotic behavior. Although
model data on the computed eigenfunctions shown in Fig. %ne | OMs are not expected to be accurate far from the design
Predictions based on the low-order models exhibit oscillagongitions, we summarize here a few important characteris-
tions of correct frequency but of slightly larger amplitude tjcs of the model predictions for large Re. The models ex-
than those calculated by direct projection. Similar results argipit different routes to chaos depending on the number of
obtained with a6+ 6)-equation model. modes retainedorder of truncation For example, Fig. 13
shows the long time predictions GEOM 435, M;=M,=4)

at Re=5000 and Re5500 indicating transition to solutions

of higher temporal complexity. The left column corresponds
to the solution at Re5000 while the right column corre-

In the remainder of this section a notation of the formsponds to Re5500. Figure 14 shows the magnitude of the
(LOMy30, M =M,=4) refers to the low-order model con- Fourier transformb,(f ), of bs(t) at Re=5500. A period
structed at design parameter,R&30 keeping four terms in  doubling bifurcation undergone {OM 455, M1=M,=6)
the velocity field expansion and four terms in the temperaat Re=5000 is shown in Figs. 15 and 16. Here the left col-
ture field expansiofisee Eq(9)]. All results presented in this umn corresponds to the solution at=R4500 while the right
section describe temporal behavior after all initial transientsolumn depicts the solution at R&000. For a fixed trunca-
die out. tion level, the predicted route to chaos is not altered by small

Before discussing the predictions of the reduced modelshanges in the initial conditions or small variations in the
for Re#Re,, let us summarize the basic characteristics of thecoefficients of Eqs(10) and (11). These small variations
flow under study. For small values of Reynolds number thenmay arise when different numerical integration and differen-
flow is time independent. The flow becomes unstdblur- tiation methods are used in implementing the approach de-
cation to time-periodic solutionat Re=300 and it exhibits scribed in Sec. lli(e.g., spectral vs finite-difference based
self-sustained time-periodic oscillations for 30Re<1050.  method$. Note that due to the forcing of the temperature

Each of the LOMs reproduces successfully the dynamifield by the velocity field built in Eqs(1)—(3) and(10) and
cal behavior of the velocity and temperature fields for(11), the temperature coefficients may exhibit quasiperiodic
Re<1050 as long aM ;>3 andM,>3. The conditions at the behavior while the velocity modes exhibit time-periodic
onset of spontaneous oscillations are predicted well by thdimit cycle) oscillations for some ranges of Re. This is the
LOMs. Table Il lists the values of the critical Reynolds case, for example, folLOM 45, M ;=M ,=4) at Re=9500
number as predicted by various LOMs. and (LOM g50, M;=M,=8) at Re=14000. Note also that

In the range 43&Re<1050 we have compared the for sufficiently large values of Reynolds number, the solu-
LOM predictions with the corresponding full model solu- tions of LOMs blow up. In general, inclusion of more modes
tions. In this range of Reynolds number, the LOMs predictin the model delays this behavior to higher values of Re.
self-sustained time-periodic behavior in agreement with the  The authors are not aware of any systematic investiga-
full model, as long asv;=4 andM,=4. The frequency of tion of the sequence of bifurcations leading to chaos in the
oscillations is predicted very accurately although the ampli-open flow system under study. As mentioned before, no
tude of oscillations is less accurately predicted by the LOM<laim of quantitative agreement between the LOM predic-
(see Figs. 10-12 tions far from the design conditions and the full model solu-

F. Low-order model predictions for Re  #Re,
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FIG. 15. Computed time series and phase space portraits of velocity expansion coefficients Has¥d gg,, M, =M ,=6), Pr=Pr,=0.71.(a) Re=4500,
(b) Re=5000.

tions is made here. However, the low-order models exhibifor Pr,=7.1 and Rg = 430. The flowfield and consequently
properties that are qualitatively in agreement with Navier—he velocity eigenfunctions are unaffected by the change in
Stokes solutions for flows in other open systefsee, for e value of Prandtl number due to the one way coupling of

example,ﬁghe quasiperiodic solutions reported by Guzmag,e gqyerning equations. Figure 17 shows the computed tem-
and Amori™for a converging-diverging channel with smooth perature eigenfunctions. The eigenfunctions come in pairs,

walls). with a quarter-wavelength phase shift within each pair. This
is consistent with the traveling wave nature of the distur-
bances discussed in Sec. IV C. The character of the first pair

The method described in the previous sections was ap, ) is basically unaffected by the change in[Pompare
plied to spectral element solutions of E¢¥)—(3) computed  Fig. 17 with Fig. &a), case ]. However, the second pdig,

V. RESULTS FOR Pr=7.1
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FIG. 16. Computed time series and phase space portraits of temperature expansion coefficients lfe®d;@5 M;=M,=6), Pr=Pr,=0.71. (8
Re=4500, (b) Re=5000.

) captures smaller scale features than the correspondirthe ones discussed for £0.71. However, the transition to
eigenfunctions for Re0.71[compare Fig. 17 with Fig. ®), complex temporal behavior takes place much earlier, at val-
case ]. Note also thafys, i,) for Pr=7.1 are “noisier” than  ues of Re as low as 3000.

(3, ) for Pr=0.71. The low-dimensional model derived

for (Rg=430, Pg=7.1, M;=M,=4) reproduces success-

fqlly the dy_namical bghavior of the temperqture fielq _at de~|. CONCLUSIONS

sign conditiongsee Fig. 18 Far from the design conditions,

as Re is increased, changes in the character of the tempera- Transitional flow in a periodically grooved channel has
ture coefficientsh;(t),i=1,2,...,4, are qualitatively similar to been analyzed by the method of empirical eigenfunctions or
Phys. Fluids, Vol. 9, No. 3, March 1997
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proper orthogonal decomposition in order to extract the co- b, o000l
herent structures of the flow and to develop realistic dynami- :
cal low-order models. -0.03 -
The dynamicalspatio-temporalcoherent structures are 008l o
identified as traveling waves, formed by two standing waves 04 02 00 02 04
that are out of phase by approximately a quarter period in b,

time and space. For fixed Pr, the eigenvalues, eigenfunctions

and COhere'ﬁSpatio'temporalsm"Ctures depend on the Rey- FIG. 18. Comparison of low-order model predictions with full-model results
nolds number. The dependence of the two most energetig design conditions. Re430, Py=7.1. Solid line:(LOM 39, M;=M,=4)
eigenfunctions of each fie[d(pl, ¢2) and(lpl, ¢2)] on Rey- predictions. Dotted line: Full model results.

nolds number is weak. As Re increases, high order POD

eigenfunctions gain energy and their relative contribution to

the total fluctuation energy increases. Most of the transferredqrces. Galerkin projection using POD eigenfunctions leads
energy is gained by the third and fourth eigenmodes, and thg, |ow-order models that accurately predict the systems’ dy-
remaining is distributed among the higher modes. The ennamical behavior in the vicinity of the design conditions,
ergy gain of higher modes affects the eigenfunctions, causingys significantly reducing the computational effort in the
existing structures to stretch and become larger and neWnalysis and simulation of these systems. We believe that
small scale structures to form. The extent of energy redistriig\w-order modeling has the potential of becoming a very
bution is higher for the temperature field than for the velocity,,sefyl tool in the study of coherent structure dynamics, and

field. in exploring ideas in the context of intelligent flow control
The accuracy of the constructed low-order models deychemes.
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