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Reduced dynamical models are derived for transitional flow and heat transfer in a periodically
grooved channel. The full governing partial differential equations are solved by a spectral element
method. Spontaneously oscillatory solutions are computed for Reynolds number Re>300 and
proper orthogonal decomposition is used to extract the empirical eigenfunctions at Re5430, 750,
1050, and Pr50.71. In each case, the organized spatio-temporal structures of the thermofluid system
are identified, and their dependence on Reynolds number is discussed. Low-dimensional models are
obtained for Re5430, 750, and 1050 using the computed empirical eigenfunctions as basis functions
and applying Galerkin’s method. At least four eigenmodes for each field variable are required to
predict stable, self-sustained oscillations of correct amplitude at ‘‘design’’ conditions. Retaining
more than six eigenmodes may reduce the accuracy of the low-order models due to noise introduced
by the low-energy high order eigenmodes. The low-order models successfully describe the
dynamical characteristics of the flow for Re close to the design conditions. Far from the design
conditions, the reduced models predict quasi-periodic or period-doubling routes to chaos as Re is
increased. The case Pr57.1 is briefly discussed. ©1997 American Institute of Physics.
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I. INTRODUCTION

There is evidence that certain thermofluid systems
hibit chaotic behavior through the nonlinear interaction o
small number of degrees of freedom and that the early sta
of the transition process can be identified in phase spac
low-dimensional dynamical behavior. This observation p
vides the basis for the construction of low-order mod
~LOMs! describing the dynamics of transitional flows. Low
order models replace the system of governing partial dif
ential equations~PDEs, infinite-dimensional systems! with a
relatively small set of ordinary differential equations~ODEs,
finite-dimensional systems!. Low-dimensional dynamica
models have been reported for the description of cohe
structures in the wall region of a turbulent boundary laye1

Rayleigh–Benard convection,2 isothermal grooved channe
flow and flow past a cylinder,3 transitional flat-plate bound
ary layer,4 free convection in vertical channels,5,6 and heat
transfer by forced convection in a periodically groov
channel.7,8

PDEs can be transformed into systems of ODEs by w
known procedures, e.g., the method of weighted residu
This approach has been successfully applied using a va
of basis functions, e.g., trigonometric functions, orthogo
polynomials,9 or spline functions.10,11In general, these meth
ods lead to large systems of ODEs. Low-dimensional
namical models may be developed by expanding the
known functions in terms of basis functions that a
constructed for each system separately and reflect the be

a!Corresponding author. Telephone:~610! 758-4929; Fax:~610! 758-6224;
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ior of the system in the vicinity of some values of the con
trolling parameters. A rigorous methodology for obtaining
set of optimal basis functions is the Proper Orthogonal D
composition~POD!, or method of empirical eigenfunctions,
first introduced in fluid mechanics by Lumley12 as a tool for
the extraction of coherent structures in turbulent flows. Th
snapshot version of POD13 provides an efficient way of ex-
tracting the empirical eigenfunctions of large data sets. PO
identifies the most energetic eigenmodes and enables us
compress numerical or experimental data by retaining
small number of such modes. These modes store the inf
mation necessary for accurate dynamical decomposition
time-varying fields and, when appropriately combined, the
systematically identify the dynamical~spatio-temporal! co-
herent structures. A large number of POD applications f
analysis and postprocessing of experimental data has b
reported, e.g., Glauser and George,14 Lu and Smith,15 and
Bonnet and Glauser.16 For an overview of POD and its ap-
plications, see Sirovich17 and Berkoozet al.18

The stability and heat transfer characteristics of flow in

FIG. 1. Grooved channel configuration.
551/$10.00 © 1997 American Institute of Physics
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grooved channel have been studied by ma
researchers.19–22 The configuration involves sharp corne
leading to flow separation and temporal hydrodynamic ins
bilities even at low or moderate values of Reynolds num
~Re!. The flow is time independent when Re,Rec , and ex-
hibits self-sustained oscillations for Re>Rec , where Rec de-
notes the critical Reynolds number at the onset of temp
instability. The isothermal case has been analyzed u
POD by Deaneet al.3 and Sahanet al.7 Sahanet al.8 in-
cluded temperature effects and developed low-order mo
of the thermofluid system at slightly supercritical conditio
~Re5430!.

In this paper, the snapshot version of proper orthogo
decomposition has been applied to transitional flow and h
transfer in the grooved channel shown in Fig. 1. This c
figuration is an idealization of channel geometries that
pear frequently in cooling of electronic equipment where
protrusions are formed by chip modules. The channel ge
etry is assumed to be periodic and entrance effects are
nored. POD is performed at Pr50.71 and Re5430, 750, and
1050. The case Pr57.1 and Re5430 is briefly discussed in
Sec. V. At these values of Re the flow is time periodic. F
each Reynolds number, a low-dimensional set of nonlin

FIG. 2. Computational domain and boundary conditions.h2/h150.75,
l 1/h155.0, l 2/h153.0.

FIG. 3. Computational mesh. 44 spectral elements each with 939 colloca-
tion points.
552 Phys. Fluids, Vol. 9, No. 3, March 1997
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ODEs is derived by using Galerkin projection. The ability
the reduced models to describe the dynamics of the flow
temperature fields is examined.

II. FULL MODEL: FORMULATION AND SOLUTION
METHOD

Figure 1 shows the grooved channel configuration un
study. The velocity field is assumed to be incompressible
periodically fully developed.22 Neglecting buoyancy, viscou
dissipation, and energy generation, the partial differen
equations governing constant-property, time-dependent fl
and heat transfer can be written in dimensionless form
follows:

Conservation of mass:

¹•V50, ~1!

Conservation of momentum:

]V

]t
1~V•¹!V52¹P1

1

Re
¹2V1F, ~2!

Conservation of energy:

FIG. 4. Contribution of eigenvalues to the total flow and temperature fl
tuation energy.~a! Velocity modes,~b! temperature modes, Pr50.71.
Sahan, Liakopoulos, and Gunes
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FIG. 5. ~a! First and second velocity empirical eigenfunctions.~i! Re5430,
~ii ! Re5750, ~iii ! Re51050.~b! Third and fourth velocity empirical eigen-
functions. ~i! Re5430, ~ii ! Re5750, ~iii ! Re51050. ~c! Fifth and sixth
velocity empirical eigenfunctions.~i! Re5430,~ii ! Re5750,~iii ! Re51050.
i-

an-
,

g in
dtl
]Q

]t
1~V•¹!Q5

1

Re Pr
¹2Q. ~3!

In writing the governing equations in this form, the d
mensionless variables have been defined as

X5
x

h1
, Y5

y

h1
, t5

U ref

h1
t* , U5

u

U ref
,

. Fluids, Vol. 9, No. 3, March 1997
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V5
v
U ref

, P5
p

rU ref
2 , Q5

T2Tc
Th2Tc

, and F5
h1f

U ref
2 ,

where 2h1 denotes the width of the bypass part of the ch
nel ~see Fig. 2!, r is the fluid density,p is the static pressure
T denotes the local temperature, andf denotes all forcing
contributions. The dimensionless parameters appearin
Eqs. ~2! and ~3!, the Reynolds number Re, and the Pran
number Pr, are defined as

Re5
U ref h1

n
, Pr5

n

a
,

553Sahan, Liakopoulos, and Gunes
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TABLE I. The ten largest normalized eigenvalues and their respective contributions to the total flow fluct
energy.

Modes

Re5430
Fx50.0053Fy50

Re5750
Fx50.0035Fy50

Re51050
Fx50.0028Fy50

Normalized
eigenvalue

Cumulative
energy, %

Normalized
eigenvalue

Cumulative
energy, %

Normalized
eigenvalue

Cumulative
energy, %

1 0.513 95 51.39 0.511 59 51.16 0.500 67 50.07
2 0.467 41 98.14 0.456 23 96.78 0.451 21 95.19
3 0.008 29 98.96 0.012 29 98.01 0.014 99 96.69
4 0.007 67 99.72 0.011 31 99.14 0.014 31 98.12
5 0.001 17 99.84 0.002 93 99.43 0.007 02 98.82
6 0.001 13 99.95 0.002 91 99.73 0.006 67 99.48
7 0.000 16 99.97 0.000 85 99.81 0.001 79 99.67
8 0.000 15 99.99 0.000 73 99.88 0.001 31 99.80
9 0.000 04 99.99 0.000 34 99.91 0.000 65 99.86
10 0.000 03 99.99 0.000 29 99.94 0.000 47 99.91
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wheren denotes the kinematic viscosity,a is the fluid ther-
mal diffusivity, andU ref53/2Uav whereUav is the average
velocity at a channel cross section. We consider the flow
from the channel entrance, and taking into account the s
tial periodicity of the channel, we solve the governing equ
tions in one computational module by imposing period
boundary conditions in the streamwise direction~see Fig. 2!.
The remaining boundary conditions considered in this st
are: ~i! no slip conditions at the solid–fluid interfaces,~ii !
uniform temperature distribution along the top channel w
~T5Tc5Tcold! as well as along the protruding surfac
~T5Th5Thot!, and ~iii ! adiabatic conditions along the bo
tom wall segment between the protruding modules~see Fig.
2!.

Equations~1!–~3! with the corresponding boundary con
ditions are solved by a spectral element method.23 Imple-
mentation of the numerical method is based on Nekton
computer program developed by Patera and his co-worke24

to simulate steady and unsteady incompressible fluid fl
heat, and mass transfer. In our simulations, 44 tw
dimensional spectral elements were used~see Fig. 3!. Nu-
merical solutions were obtained for order of interpolan
N54, 6, 8, 10, and 12. IncreasingN from 8 to 10 or 12
results in no significant changes in the solution. Values of
ids, Vol. 9, No. 3, March 1997
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field variables at representative fixed locations and integ
of the field variables over the entire domain change by l
than 0.6%. Results are presented forh2/h150.75,l 1/h155.0,
l 2/h153.0 ~see Fig. 2!. For these parameters, spontaneo
self-sustained oscillations appear at Rec.300.

III. DEVELOPMENT OF LOW ORDER MODELS

The time-dependent data obtained by direct numer
simulation at a supercritical Reynolds number~Re.Rec! are
first decomposed into time-averaged~V̄,Q̄! and time-varying
~V8,Q8! parts:

V~X,t !5V̄~X!1V8~X,t !,

Q~X,t !5Q̄~X!1Q8~X,t !.

~4!

Then, the empirical eigenfunctions are constructed by
early combining the time-varying parts of the fie
variables,13
rature
TABLE II. The ten largest normalized eigenvalues and their respective contributions to the total tempe
fluctuation ‘‘energy’’ ~Pr50.71!.

Modes

Re5430 Re5750 Re51050

Normalized
eigenvalue

Cumulative
energy, %

Normalized
eigenvalue

Cumulative
energy, %

Normalized
eigenvalue

Cumulative
energy, %

1 0.497 70 49.77 0.491 61 49.16 0.474 87 47.49
2 0.481 20 97.89 0.469 38 96.10 0.451 76 92.67
3 0.008 88 98.78 0.013 71 97.47 0.019 92 94.66
4 0.008 57 99.64 0.013 07 98.77 0.019 09 96.56
5 0.001 58 99.79 0.004 46 99.22 0.012 51 97.81
6 0.001 53 99.94 0.004 27 99.65 0.012 09 99.02
7 0.000 21 99.97 0.001 07 99.75 0.002 75 99.30
8 0.000 20 99.99 0.001 03 99.86 0.002 60 99.56
9 0.000 03 99.99 0.000 43 99.90 0.001 33 99.69
10 0.000 03 99.99 0.000 40 99.94 0.001 07 99.80
Sahan, Liakopoulos, and Gunes
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FIG. 6. ~a! First and second temperature empirical eigenfunctions~iso-
therms!, Pr50.71. ~i! Re5430, ~ii ! Re5750, ~iii ! Re51050.~b! Third and
fourth temperature empirical eigenfunctions~isotherms!, Pr50.71. ~i! Re
5430, ~ii ! Re5750, ~iii ! Re51050.~c! Fifth and sixth temperature empiri
cal eigenfunctions~isotherms!, Pr50.71.~i! Re5430, ~ii ! Re5750, ~iii ! Re
51050.
el

-

fk~X!5(
i51

M

akiV i8~X,t i !, ck~X!5(
i51

M

bkiQ i8~X,t i !, ~5!

whereak ~bk! denotes thekth eigenvector of the velocity
~temperature! correlation matrix, andM is the number of
snapshots. For the velocity field, the elements of the corr
tion matrixC are given by

Cmn5
1

M E
V
Vm8 ~X,tm!•Vn8~X,tn!dV, ~6!
s. Fluids, Vol. 9, No. 3, March 1997

nloaded¬07¬Jan¬2010¬to¬194.177.202.252.¬Redistribution¬subject
a-

while for the temperature field

Cmn5
1

M E
V

Qm8 ~X,tm!Qn8~X,tn!dV. ~7!

The eigenvalues of matrixC and the empirical eigenfunc
tions, Eq.~5!, have the following properties:13,18

~a! The eigenvalueslm , m51,2,...,M , are real and non-
negative and they are ordered asl1>l2
>l3>•••>lM>0.
555Sahan, Liakopoulos, and Gunes
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FIG. 7. Temporal expansion coefficients computed by direct projection of snapshots on the eigenfunctions, Pr50.71.~a! Re5430,~b! Re5750,~c! Re51050.
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~b! Each eigenvalue represents the fluctuation ‘‘energ
that the corresponding eigenfunction contributes to
flow ~temperature! field.

~c! The eigenfunctions are orthogonal to each other a
after normalization, form orthonormal bases,

E
V
fi•fjdV5d i j , E

V
c ic jdV5d i j . ~8!

~d! The velocity empirical eigenfunctions are divergen
free ~since the flow is incompressible!.

The time-varying parts of the velocity and temperatu
fields can be expressed in terms of the normalized eigenf
tions,
556 Phys. Fluids, Vol. 9, No. 3, March 1997
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V8~X,t !5 (
k51

M1

ak~ t !fk~X!,

Q8~X,t !5 (
k51

M2

bk~ t !ck~X!,

~9!

wherefk(ck) denotes thekth eigenfunction for the velocity
~temperature! field andM1, M2 denote the number of mode
retained in the expansions. When few modes capture mo
the fluctuating ‘‘energy,’’ we selectM1!M andM2!M in
order to keep the dimensionality of the reduced model lo

Substituting Eq.~9! into Eqs. ~2! and ~3!, applying
Galerkin method, and making use of the orthonorma
property of the empirical eigenfunctions, we obtain a syst
Sahan, Liakopoulos, and Gunes
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of nonlinear ODEs for the expansion coefficientsak(t) and
bk(t):

dak
dt

5Ak1
1

Re
Bk1Ckiai1

1

Re
Dkiai1Eki jaiaj ,

k51,2,...,M1 , ~10!

dbk
dt

5Fk1
1

Re Pr
Gk1Hkiai1Kkibi1

1

Re Pr
Lkibi

1Mki jaibj , k51,2,...,M2 . ~11!

The coefficients appearing in the above equations
related to the various inner products among the eigenfu
tions and/or mean flow and temperature fields. Specific
sults for these coefficients can be obtained from the auth
The integrals required in POD and in the Galerkin project
have been carried out using Gauss quadrature on the Ga
Legendre–Lobatto nodes on which the input data are kno
Carrying out the required integrations by conventional n
merical quadrature methods leads to considerable devia
when low spatial resolution~small N! solutions of the full
model are used. Note that Eq.~10! is independent of the
temperature field since we consider incompressible fl
constant fluid viscosity, and buoyancy forces are neglec
Note also that expansions~9! satisfy the appropriate bound

FIG. 8. Reconstructed temperature spatio-temporal structures, Pr50.71. ~a!
z1, ~b! z2, Re5430,T5period of oscillation.
Phys. Fluids, Vol. 9, No. 3, March 1997
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ary conditions and that for periodic boundary conditio
there is no contribution of the pressure term in Eq.~10! ~see
Deaneet al.3!.

IV. RESULTS FOR Pr50.71

A. Eigenvalues

Twenty snapshots~M520!, equally spaced over on
cycle, were used in the proper orthogonal decomposit
IncreasingM has negligible effect on the results. The te
largest eigenvalues and their cumulative contribution to
flow and temperature fluctuation ‘‘energy’’ are listed
Tables I and II. The eigenvalues are normalized by requir
(li51 and they are ordered based on their magnitude.
the values of Re considered in this study the eigenval
occur in pairs. The eigenvalues belonging to a pair ha
approximately equal magnitude.

For Re5430 the first velocity modal pair~first and sec-
ond velocity eigenmodes! captures 98.1% of the total flow
fluctuation energy. The cumulative contribution of the tw
most energetic modal pairs is 99.7% while the three m
energetic pairs~six largest velocity eigenvalues! contain al-
most the total flow fluctuation energy@see Table I and Fig.
4~a!#. As Re increases, the percentage of energy containe
the first two modes~the first modal pair! decreases while the
relative contribution of the third and fourth modes to t
total fluctuation energy increases~see Table I!.

Turning to the energy distribution among temperatu
modes, Table II shows that, as Re increases from 430
1050, the contribution of the first and second temperat
modes decreases while the third and fourth modes g
share. The drop in the contribution of the first temperat
modal pair is significantly higher than the drop in the cont
bution of the first velocity modal pair~compare Tables I and
II !. As a consequence, more modes are necessary to ca
the same percentage of the temperature fluctuation energ
Re increases. For Re5430, four modes retain 99.6% of th
entire fluctuation energy while for Re5750 and Re51050,
the same modes capture only 98.8% and 96.6% of the fl
tuation energy, respectively. Note, however, that the first
modes contain more than 99.0% of the fluctuating energ
all three cases@see Table II and Fig. 4~b!#.

B. Eigenfunctions

The empirical eigenfunctionsfi andci , i51,2,...,6 are
shown in Figs. 5 and 6 for Re5430, 750, and 1050. The two
most energetic eigenfunctions~i51,2! contain the large scale
features of each field while higher modes~of lower energy
level! capture the small scale features of the fields@compare
Fig. 5~a! with Figs. 5~b!–5~c! and Fig. 6~a! with Figs. 6~b!–
6~c!#. The eigenfunctions occur in pairs,~f1,f2!,
~f3,f4!,...,~c1,c2!,~c3,c4!,••• . Within each pair the eigen
functions are phase shifted by approximately a quarter wa
length in the bypass region of the channel.

At Re5430, large scale features in~f1,f2! cover almost
the whole bypass region extending slightly to the groo
portion of the channel@Fig. 5~a!, case i#. Small scale features
557Sahan, Liakopoulos, and Gunes
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FIG. 9. Temporal expansion coefficients computed by the low-order models at design conditions, Pr5Pr050.71, M 15M254. ~a! Re5Re05430, ~b!
Re5Re05750, ~c! Re5Re051050.
e
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Re

nel.
in the second and third modal pairs are located in the sh
layer formed at the intersections of the bypass and groo
regions, and even smaller scale features appear in the u
portion of the bypass region and the lower portion of t
grooved region@Figs. 5~b! and 5~c!, case i#. As Re increases
the small scale features gain in energy and they become m
visible in the plots of~f3,f4! and ~f5,f6! at Re5750 and
Re51050@see Figs. 5~b! and 5~c!, cases ii and iii#. Note that
the decrease in the relative contribution of the first mo
pair to the total fluctuation energy budget does not sign
cantly effect the appearance of the first and second eig
functions@Fig. 5~a!, cases i–iii#. However, as Re increase
small scale features become bigger in size, stretch thro
the middle and groove portions of the channel, and gain
fluctuation intensity@see Figs. 5~b! and 5~c!#.

The effect of Reynolds number on the temperat
558 Phys. Fluids, Vol. 9, No. 3, March 1997
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eigenfunctions is shown in Fig. 6. The large scale structu
present in the first modal pair~c1,c2! shrink slightly as Re
increases@Fig. 6~a!#, while the second@Fig. 6~b!# and third
@Fig. 6~c!# modal pairs gain energy and their characteris
closed isotherm structures become bigger in size. For
5430 and Re5750, the small scale structures in~c3,c4!
form three layer patterns in the bypass region of the chan

TABLE III. Critical Reynolds number as predicted by various LOMs.

Model
Re at the onset of

oscillations

LOM430, M15M254 320
LOM1050, M15M254 330
LOM1050, M15M258 350
Sahan, Liakopoulos, and Gunes
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At Re51050, these structures have merged to form a tw
layer pattern of larger and more energetic structures@Fig.
6~b!#. Thus, as Re increases, significant changes in the
tial characteristics of the temperature eigenfunctions are
served in accordance with the substantial redistribution
fluctuation energy among the six most energetic tempera
eigenmodes.

FIG. 10. Comparison of low-order model predictions with full-model resu
for ReÞRe0 , and Pr5Pr050.71. Solid line:~LOM430, M15M254! predic-
tions for Re5750. Dotted line: Full model results for Re5750.

FIG. 11. Comparison of low-order model predictions with full-model resu
for ReÞRe0 and Pr5Pr050.71. Solid line:~LOM430, M 15M254! predic-
tions for Re51050. Dotted line: Full model results for Re51050.
Phys. Fluids, Vol. 9, No. 3, March 1997
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C. Spatio-temporal structures

The temporal expansion coefficients, obtained by dir
projection of the input velocity and temperature data on
computed eigenfunctions, are plotted in Fig. 7. Note that
expected, the amplitudes of the temporal expansion co
cients increase as Re increases. The temporal expansio
efficients corresponding to a pair, i.e., (a1 ,a2), (a3 ,a4),
(b1 ,b2), (b3 ,b4), etc., are phase shifted by a quarter of
period. We have seen in the previous section that the c
puted eigenfunctions~stationary spatial structures! also come
in pairs with a phase shift of approximately a quarter wa
length in the bypass portion of the channel. Noting that
productaifi ~no summation! represents a standing wave an
recalling that when two standing waves are out of phase b
quarter period both in time and space, a travelling wave
formed,25 we may define for the problem at hand dynamic
~spatio-temporal! coherent structures of velocity,jm~X,t!,
and temperature,zm~X,t!, as follows:

j1~X,t !5(
i51

2

ai~ t !fi~X!,

j2~X,t !5(
i53

4

ai~ t !fi~X!,..., ~12!

z1~X,t !5(
i51

2

bi~ t !c i~X!,

z2~X,t !5(
i53

4

bi~ t !c i~X!,..., ~13!

FIG. 12. Comparison of low-order model predictions with full-model resu
for ReÞRe0 and Pr5Pr050.71. Solid line:~LOM1050, M15M254! predic-
tions for Re5750. Dotted line: Full model results for Re5750.
559Sahan, Liakopoulos, and Gunes
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FIG. 13. Computed time series and phase space portraits of temperature expansion coefficients based on~LOM430, M15M254!, Pr5Pr050.71. ~a!
Re55000,~b! Re55500.
h

ai
dy
h
a

a
tia

d so
t of
and
ll
al-
e
ber
r-
ted
the
ce-
and identify them approximately as traveling waves. T
evolution of z1~X,t! and z2~X,t! is shown in Fig. 8 for Re
5430. Note that a pair of stationary eigenfunctions cont
information on the typical shape of the corresponding
namical ~spatio-temporal! coherent structure since eac
eigenfunction can be considered as a coherent structure
specific instant in time.

D. Low-order models

In developing a low-order model it is desired to keep
few modes as possible in the system of ordinary differen
560 Phys. Fluids, Vol. 9, No. 3, March 1997
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equations. However, enough modes need to be retaine
that the field variables are reconstructed accurately, mos
the flow and temperature fluctuation energy is captured,
the potentially important information hidden in the sma
scale features of higher modes is not lost. In practice,
though the reconstruction error in Eq.~9! decreases as th
number of retained modes increases, increasing the num
of modes in the low-order model may not improve its pe
formance due to the inevitable noise present in the compu
high order eigenfunctions. Recall that, in contrast to
proper orthogonal decomposition and reconstruction pro
Sahan, Liakopoulos, and Gunes
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dures, the Galerkin projection requires the computation
spatial derivatives of the eigenfunctions, a process that le
to noise amplification.

E. Low-order model predictions at ‘‘design’’
conditions

In applying the procedure described in Sec. III, the inp
time-dependent data are calculated at some values of
controling parameters Re5Re0 and Pr5Pr0. We refer to
these parameters as design parameters or design condi
In this paper, emphasis is given to airflow~Pr5Pr050.71! at
Re05430, 750, and 1050. The case Pr5Pr057.1 is briefly
discussed in Sec. V. For each case, Eqs.~10! and ~11! are
integrated numerically using a fourth order Runge–Ku
solver. The temporal expansion coefficients calculated ba
on the three low-order models developed at Re05430, 750,
and 1050 withM15M254 are shown in Fig. 9 after al
transients have died out. These are limit cycle solutions
can be easily verified by plotting the orbits in the state spa
These predictions are in very good agreement with the
pansion coefficients obtained by direct projection of the f
model data on the computed eigenfunctions shown in Fig
Predictions based on the low-order models exhibit osci
tions of correct frequency but of slightly larger amplitud
than those calculated by direct projection. Similar results
obtained with a~616!-equation model.

F. Low-order model predictions for Re ÞRe0

In the remainder of this section a notation of the fo
~LOM430, M15M254! refers to the low-order model con
structed at design parameter Re05430 keeping four terms in
the velocity field expansion and four terms in the tempe
ture field expansion@see Eq.~9!#. All results presented in this
section describe temporal behavior after all initial transie
die out.

Before discussing the predictions of the reduced mod
for ReÞRe0, let us summarize the basic characteristics of
flow under study. For small values of Reynolds number
flow is time independent. The flow becomes unstable~bifur-
cation to time-periodic solution! at Re.300 and it exhibits
self-sustained time-periodic oscillations for 300<Re<1050.

Each of the LOMs reproduces successfully the dyna
cal behavior of the velocity and temperature fields
Re<1050 as long asM1.3 andM2.3. The conditions at the
onset of spontaneous oscillations are predicted well by
LOMs. Table III lists the values of the critical Reynold
number as predicted by various LOMs.

In the range 430<Re<1050 we have compared th
LOM predictions with the corresponding full model sol
tions. In this range of Reynolds number, the LOMs pred
self-sustained time-periodic behavior in agreement with
full model, as long asM1>4 andM2>4. The frequency of
oscillations is predicted very accurately although the am
tude of oscillations is less accurately predicted by the LO
~see Figs. 10–12!.
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For higher values of Re the solutions of LOMs under
a series of bifurcations leading to chaotic behavior. Althou
the LOMs are not expected to be accurate far from the de
conditions, we summarize here a few important characte
tics of the model predictions for large Re. The models e
hibit different routes to chaos depending on the number
modes retained~order of truncation!. For example, Fig. 13
shows the long time predictions of~LOM430, M15M254!
at Re55000 and Re55500 indicating transition to solution
of higher temporal complexity. The left column correspon
to the solution at Re55000 while the right column corre
sponds to Re55500. Figure 14 shows the magnitude of t
Fourier transform,b̂3( f ), of b3(t) at Re55500. A period
doubling bifurcation undergone by~LOM1050, M15M256!
at Re.5000 is shown in Figs. 15 and 16. Here the left c
umn corresponds to the solution at Re54500 while the right
column depicts the solution at Re55000. For a fixed trunca-
tion level, the predicted route to chaos is not altered by sm
changes in the initial conditions or small variations in t
coefficients of Eqs.~10! and ~11!. These small variations
may arise when different numerical integration and differe
tiation methods are used in implementing the approach
scribed in Sec. III~e.g., spectral vs finite-difference base
methods!. Note that due to the forcing of the temperatu
field by the velocity field built in Eqs.~1!–~3! and ~10! and
~11!, the temperature coefficients may exhibit quasiperio
behavior while the velocity modes exhibit time-period
~limit cycle! oscillations for some ranges of Re. This is th
case, for example, for~LOM1050, M15M254! at Re.9500
and ~LOM1050, M15M258! at Re.14000. Note also tha
for sufficiently large values of Reynolds number, the so
tions of LOMs blow up. In general, inclusion of more mod
in the model delays this behavior to higher values of Re.

The authors are not aware of any systematic invest
tion of the sequence of bifurcations leading to chaos in
open flow system under study. As mentioned before,
claim of quantitative agreement between the LOM pred
tions far from the design conditions and the full model so

FIG. 14. Magnitude of Fourier transform ofb3(t) at Re55500. ~LOM430,
M15M254!, Pr5Pr050.71.
561Sahan, Liakopoulos, and Gunes
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FIG. 15. Computed time series and phase space portraits of velocity expansion coefficients based on~LOM1050, M 15M256!, Pr5Pr050.71.~a! Re54500,
~b! Re55000.
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tions is made here. However, the low-order models exh
properties that are qualitatively in agreement with Navie
Stokes solutions for flows in other open systems~see, for
example, the quasiperiodic solutions reported by Guzm
and Amon26 for a converging-diverging channel with smoo
walls!.

V. RESULTS FOR Pr57.1

The method described in the previous sections was
plied to spectral element solutions of Eqs.~1!–~3! computed
562 Phys. Fluids, Vol. 9, No. 3, March 1997
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for Pr057.1 and Re0 5 430. The flowfield and consequently
the velocity eigenfunctions are unaffected by the change
the value of Prandtl number due to the one way coupling
the governing equations. Figure 17 shows the computed t
perature eigenfunctions. The eigenfunctions come in pa
with a quarter-wavelength phase shift within each pair. T
is consistent with the traveling wave nature of the dist
bances discussed in Sec. IV C. The character of the first
~c1, c2! is basically unaffected by the change in Pr@compare
Fig. 17 with Fig. 6~a!, case i#. However, the second pair~c3,
Sahan, Liakopoulos, and Gunes
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FIG. 16. Computed time series and phase space portraits of temperature expansion coefficients based on~LOM1050, M 15M256!, Pr5Pr050.71. ~a!
Re54500,~b! Re55000.
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c4! captures smaller scale features than the correspon
eigenfunctions for Pr50.71 @compare Fig. 17 with Fig. 6~b!,
case i#. Note also that~c3, c4! for Pr57.1 are ‘‘noisier’’ than
~c3, c4! for Pr50.71. The low-dimensional model derive
for ~Re05430, Pr057.1, M15M254! reproduces success
fully the dynamical behavior of the temperature field at d
sign conditions~see Fig. 18!. Far from the design conditions
as Re is increased, changes in the character of the tem
ture coefficients,bi(t),i51,2,...,4, are qualitatively similar to
Phys. Fluids, Vol. 9, No. 3, March 1997
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the ones discussed for Pr50.71. However, the transition to
complex temporal behavior takes place much earlier, at
ues of Re as low as 3000.

VI. CONCLUSIONS

Transitional flow in a periodically grooved channel h
been analyzed by the method of empirical eigenfunctions
563Sahan, Liakopoulos, and Gunes
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proper orthogonal decomposition in order to extract the c
herent structures of the flow and to develop realistic dynam
cal low-order models.

The dynamical~spatio-temporal! coherent structures are
identified as traveling waves, formed by two standing wav
that are out of phase by approximately a quarter period
time and space. For fixed Pr, the eigenvalues, eigenfuncti
and coherent~spatio-temporal! structures depend on the Rey
nolds number. The dependence of the two most energe
eigenfunctions of each field@~f1, f2! and~c1, c2!# on Rey-
nolds number is weak. As Re increases, high order PO
eigenfunctions gain energy and their relative contribution
the total fluctuation energy increases. Most of the transferr
energy is gained by the third and fourth eigenmodes, and
remaining is distributed among the higher modes. The e
ergy gain of higher modes affects the eigenfunctions, caus
existing structures to stretch and become larger and n
small scale structures to form. The extent of energy redis
bution is higher for the temperature field than for the veloci
field.

The accuracy of the constructed low-order models d
pends strongly on the number of modes retained. For
range of Re studied, at least four modes for velocity and fo
modes for temperature are required to predict self-sustain
oscillations in time at design conditions. Retaining more th
six modes may actually decrease the accuracy of the LO
because high order POD eigenfunctions are, in general, l
accurately calculated than the low-order most energetic on
Close to the design conditions, the LOM predictions are
good agreement with the full model results. Far from th
design conditions, the LOMs exhibit different routes to cha
depending on the order of truncation~number of modes re-
tained!. Ranges of Reynolds number for which quasiperiod
solutions and period-doubling bifurcations exist have be
determined by numerically solving the ordinary differentia
equations.

Direct numerical simulations of transitional and turbu
lent thermofluid systems demand enormous computer

FIG. 17. Temperature empirical eigenfunctions~isotherms! at Re5430, Pr
57.1.
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sources. Galerkin projection using POD eigenfunctions le
to low-order models that accurately predict the systems’
namical behavior in the vicinity of the design condition
thus significantly reducing the computational effort in t
analysis and simulation of these systems. We believe
low-order modeling has the potential of becoming a ve
useful tool in the study of coherent structure dynamics, a
in exploring ideas in the context of intelligent flow contr
schemes.
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