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ABSTRACT

Low-dimensional dynamical models of transitional flow in a periodically grooved
channel are numerically obtained. The governing partial differential equations
(continuity and Navier-Stokes equations) with appropriate boundary conditions
are solved by a spectral element method for Reynolds number Re — 430. The
method of empirical eigenfunctions (Proper Orthogonal Decomposition) is then
used to extract the most energetic velocity eigenmodes, enabling us to represent
the velocity field in an optimal way. The eigenfunctions enable us to identify
the spatio-temporal (coherent) structures of the flow as travelling waves, and
to explain the related flow dynamics. Using the computed eigenfunctions as
basis functions in a truncated series representation of the velocity field, low-
dimensional models are obtained by Galerkin projection. The reduced systems,
consisting of few non-linear ordinary differential equations, are solved using
a fourth-order Runge-Kutta method. It is found that the temporal evolution
of the most energetic modes calculated using the reduced models are in good
agreement with the full model results. For the modes of lesser energy, low-
dimensional models predict typically slightly larger amplitude oscillations than
the full model. For the slightly supercritical flow at hand, reduced models re-
quire at least four modes (capturing about 99% of the total flow energy). This is
the smallest set of modes capable of predicting stable, self-sustained oscillations
with correct amplitude and frequency. POD-based low-dimensional dynami-
cal models considerably reduce the computational time and power required to
simulate transitional open flow systems.

1 INTRODUCTION

A large number of engineering applications deal with flow in periodically re-
peated configurations such as flow over grooves and flow in grooved channels
[1-6]. The grooved channel geometry, shown in Fig. 1, is encountered in many
low-speed applications such as cooling of electronic devices and circuit boards
[5-6], and in flow and heat transfer in compact heat exchangers [4]. In small
size systems with moderate Reynolds number, Re, transport enhancement is



important and is achieved by mixing due to hydrodynamic instabilities [6]. The
grooved channel geometry represents one such configuration characterized by
wall bounded flow with separation. The fluid flow in the channel can be divided
into two parts: the by-pass and the groove regions (see Fig. 2). The flow pat-
terns in the by-pass and groove regions differ greatly. Approximately parallel
flow structure is present in the by-pass region which is separated from the recir-
culating zones within the grooved regions by shear layers [5-6]. The shear layer
partitioning the flow regions does not permit convective exchange of fluid. The
combination of the above factors results in differences in convective exchange of
fluid between the regions. The overall flow reaches a time-dependent state when
the Reynolds number exceeds a critical value Re.. When Re. < Re < Res, the
flow exhibits self-sustained, time-periodic oscillations [5-6].

Direct numerical simulations (DNSs) of transitional flow in grooved channel
geometries have been performed in order to investigate both flow and heat
transfer characteristics [2,3,5,6]. However, stability, bifurcation and flow control
studies by DNS require tremendous computational resources. The necessity for
low-dimensional models (LDMs), which carry considerable physical information
on the dynamical behavior of the flow, arises in order to reduce the size of the
problem and to make stability, bifurcation and control studies of transitional
flows in complex configurations feasible.

The modeling of partial differential equations (PDEs) by minimal systems
of ordinary differential equations (ODEs) has become a major issue in the study
of complicated flow phenomena such as transition and turbulence. LDMs can
replace the system of governing PDEs by a small set of non-linear ODEs. Since
DNS of transitional and turbulent flows in complex geometries requires tremen-
dous amount of computational time, an accurate low-dimensional approxima-
tion allows us to perform parametric studies of such flows with considerably
less computational effort [7-15]. Spectral methods (such as Fourier-Galerkin,
Chebyshev-Galerkin, etc. proposed by Gotlieb and Orszag [16]) or weighted
residuals techniques based on splines (e.g., Liakopoulos and Hsu [17], Liakopou-
los [18]) may be used to transform a PDE into a system of ODEs. However,
these methods are very general and do not lead to minimal systems (see for
example the discussion in Liakopoulos et al. [13]).

Proper Orthogonal Decomposition (POD), also known as Karhunen-Loeve
Decomposition, was introduced by Lumley [19] in order to identify coherent
structures in isothermal turbulent flows. The method can also be used to ex-
tract the empirical eigenfunctions (and the related spatio-temporal structures)
of transitional flows. Sirovich [20] proposed the snapshot version of POD in
order to analyze large data sets with less computational effort. Berkooz et al.
[21] and Holmes et al. [22] provide a thorough review of the important as-
pects of POD as applied to the analysis of turbulent flows. A large number of
POD applications and POD-based LDMs have been reported in the last decade.
Aubry et al. [23] and Zhou and Sirovich [24] applied POD to obtain LDMs of
the near wall region of a turbulent boundary layer. Sirovich et al. [25], Deane
and Sirovich [26] and Tarman [27] applied POD to turbulent Rayleigh-Benard
convection. Deane et al. [7] analyzed complex geometry flows in the transitional



regime while Deane and Mavriplis [28] used the method in a low-dimensional
description of the dynamics of separated unsteady flow past thick airfoils. Ra-
jaee et al. [29] employed POD in the study of free-shear-flow coherent structures
and their dynamical behavior in order to obtain a low-dimensional description
of the flow. Rempfer and Fasel [30-31] and Rempfer [32] used the method in
studying the evolution of three dimensional coherent structures of a transitional,
spatially evolving flat-plate boundary layer. Newman and Karniadakis [33] de-
veloped LDMs of flow-induced vibrations via POD. Sahan et al. [8-9] used
POD to obtain LDMs of non-isothermal flow in a periodically grooved channel
while Gunes et al. [10-12] developed reduced models of buoyancy-induced flow
in a vertical channel. Stability and bifurcation issues related to POD-based
low-dimensional models are discussed in Liakopoulos et al. [13].

In the present study, snapshot POD is used to extract the coherent struc-
tures and to derive low-dimensional dynamical models of a two-dimensional
transitional flow in a periodically grooved channel. Using the empirical eigen-
functions, reconstruction of the original flow is obtained in an optimal way. A
low-dimensional set of nonlinear ordinary differential equations that describes
the dynamics of the flow field is derived by Galerkin projection. The paper con-
sists of five sections. In Section 2, the full model governing equations and the
solution method are briefly discussed. In Section 3, the development of LDMs
via POD is described and relevant properties of the empirical eigenfunctions are
presented. POD results and low-dimensional dynamical model predictions are
discussed in Section 4. Concluding remarks are summarized in Section 5.

2 FULL MODEL EQUATIONS

2.1 Formulation of the problem

The grooved channel geometry under study is shown in Fig. 1. The channel is
periodic in the streamwise direction and infinite in depth. The flow is assumed to
be periodically fully-developed and the fluid is considered to be incompressible
with constant transport properties. The governing PDEs for two-dimensional
time-dependent isothermal flow can be written in dimensionless form as follows:
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The independent and dependent variables have been non-dimensionalized
using the following definitions
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In general, lower case letters denote dimensional variables. However, note that
the dimensional time is denoted by t*. In the above, (z,y) and (u, v) denote
the Cartesian coordinates and velocity components, respectively, p is the static
pressure, 2h; is the width of the by-pass portion of the channel (see Fig. 2), v
is the kinematic viscosity, p is the fluid density and U,.; = (3/2)U,, denotes
the reference velocity where U,, is the average velocity at a channel
cross-section. F; and Fy are the forcing terms in z and y directions,
respectively, and Re =(U,.; hi)/v denotes the Reynolds number. The
boundary conditions of the problem are:

(i) No slip conditions at the solid-fluid interfaces,

t =

* __h _h
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V(X,Y,t)=0, (4)
(ii) Periodic boundary conditions in the streamwise direction,
V(0,Y,t)=V(l1,Y,t), 0<Y <2hy. (5)

In the above equations, I; denotes the dimensionless length of the
computational domain in the streamwise direction, and I, is the spacing
between the modules (see Fig. 2(a)). Note that since periodic boundary
conditions are imposed in the z-direction, the model is valid far from the
channel entrance.

2.2 Method of solution

A spectral element method, Patera [34], is used to solve the governing
equations (1)-(3) with the boundary conditions (4)-(5). Implementation of the
method is based on Nekton, a computer code developed for the simulation of
steady and unsteady incompressible fluid flow, heat and mass transfer. We
refer to Ref. [35] for a detailed discussion of the numerical method. In our
simulations, 44 spectral elements are used (See Fig. 2(b)). Numerical solutions
were obtained for order of interpolants, N= 4, 6,8, 10 and 12. The error due to
spatial resolution is found to be small for N> 8. Computations were performed
on a Stardent P3000 computer and an IBM RS/6000 Model R24.

3 DEVELOPMENT OF LOW-ORDER
MODELS

As mentioned earlier, POD is used to obtained reduced dynamical models of
the flow system. POD selects an orthogonal set of spatial modes that is
optimal in terms of retained kinetic energy. In applying the snapshot POD
[20], the time-dependent data obtained by DNS are decomposed into
time-averaged (U, V) and time-varying (U’, V') parts. The time-averaged flow
field is obtained as the simple arithmetic mean of M snapshots. The empirical
eigenfunctions are computed as linear combination of the time-varying parts of
the field variable [20], i.e., in component form,



bur(X,Y) = ZA;“ (X,Y ), (6)

$ur(X,Y) = ZA;” (X,Yt;), (7)
where Ay denotes the eigenvectors of the matrix eigenvalue problem
CA =2 A4, (8)

and the elements of matrix C are

Crun = 27 Ja [U,’n(X,Y,tm) UL(X,Y tn) + V,;(X,Y,tm)V,{(X,Y,tn)]dQ. (9)
The resulting eigensystem has the following properties [20]: (i) the
eigenfunctions are orthogonal to each other, (ii) the eigenfunctions satisfy the
boundary conditions of the fluctuation field, (iii) the empirical eigenfunctions
are divergence-free since the flow is incompressible and (iv) the eigenvalues are
real and non-negative. The eigenvalues are ordered as A; > Ay > Az ... > Ap,

n=1,2,..., M. After normalizing the eigenfunctions, the time-varying part of
the velocity field is expanded in terms of the eigenfunctions as,
M,
U'(X,Y 1) =) a (t) pur(X,Y), (10)
k=1
M,
VI(X,Y,t) =) a (t) gur(X,Y), (11)

where ¢ux an(’:cl Juk denote the the z- and y- components of the kth
eigenfunctions of the velocity field. In general, M; <M in order to keep the
dimensionality of the reduced model low. The instantaneous velocity field
components can now be expressed as

U(X,Y,t)=U(X, Y)+Z ax(t) dur(X,Y), (12)
V(X, Y t)=V(X,Y)+ E ar, (t) ¢ur(X,Y). (13)

Substituting equations (12)-(13) into the governing equations (1)-(3), applying
Galerkin projection and making use of the orthonormality property of the
empirical eigenfunctions, a system of non-linear ODEs for the temporal

expansion coefficients ak( )of the form
My M

d;'tk — Ak + Re Bk + Z Ckz a; + Re Z Dkz a; + Z Z Ekz] a;a;4 (14)
=1 j=1
is obtained. The coeﬁiments (A, Bk, Ckz, D;“ and Ey;;) appearing in the
above equations are related to the various inner products among the
eigenmodes and/or mean flow field. There is no contribution from the pressure
term in the above equation [7]. Equation (14) is integrated numerically using a
fourth order Runge-Kutta solver. Convergence is checked by reducing the
integration time step.



4 RESULTS AND DISCUSSION

Results are presented for a six-mode model obtained by retaining the six most
energetic velocity eigenfunctions. The decomposition is performed at

Re = 430. At this Reynolds number, the long term attractor of the flow in the
periodically grooved channel under consideration corresponds to a limit cycle.
We take M = 20 snapshots in a period. Similar results are obtained for larger

h
sets of snapshots, e.g., M = 30, 40 and 50. Aspect ratios are h—z = 0.75,
1
l l
h—l = 5.0 and h—z = 3.0. Instantaneous velocity vector and streamlines are
1 1

shown in Fig. 3 for Re = 430. Calculation of the flow in two adjacent modules
(instead of one module as shown in Fig. 3) does not change the solution.

4.1 Eigenvalues

The eight largest normalized eigenvalues, corresponding to the most energetic
modes, are given in Table 1 in descending order. The far right column shows
the cumulative sum of the eigenvalues. The modes occur in pairs. The
eigenvalues within each pair are comparable in magnitude (see Table 1). This
pattern is identical to the ones that Deane et al. [7] and Sahan et al. [8-9]
found in their work.

The first two modes are dominant, providing the highest contribution to the
total flow energy. Table 1 reveals that the first two modes capture about 98.1%
of the entire energy of the velocity field. The cumulative contribution from the
first four modes reaches the energy level of 99.7%, suggesting the dominance of
just a few primary modes. The first six modes capture practically the total
energy of the flow. The same observations can be made by examining Fig. 4.

4.2 Eigenfunctions and spatio-temporal (coherent)
structures

The velocity empirical eigenfunctions, ¢; = d)uJ—}— d)m-f, 1=1,2, 3, 4, are
shown in Figs. 5-7. The minimum and maximum values of the stream
functions corresponding to the velocity empirical eigenfunctions are listed in
Table 2. As observed in the figures, the two most energetic modes contain the
larger scale features of the flow while the modes with smaller eigenvalues
(lower fluctuation kinetic energy) capture smaller scale features. As noted by
Deane et al. [7] and Sahan et al. [8-9] and as can be observed in Figs. 5-7,
eigenmodes come in pairs. Within a pair, the spatial structures are phase
shifted in the streamwise direction by approximately a quarter-wavelength.
Fig. 8 reveals that the corresponding temporal expansion coefficients are also
phase shifted in time by a quarter of a period, so that, if we multiply the
eigenfunctions of a pair by their corresponding temporal expansion coeflicients,
we obtain a structure that is moving in the streamwise direction. Although
the structures represented by the eigenfunctions are fixed in space, when one



mode within a pair is in the maximum energy state the other is in the
minimum energy state and this relation reverses after one quarter of a period
in time (see Fig. 8). This observation is true for all the pairs of eigenfunctions.
The eigenfunctions are related to the coherent (spatio-temporal) structures of
the flow and each eigenfunction can be considered as a part of a coherent
structure at an instant of time. Coherent structures of the flow change in shape
and energy as they move in the streamwise direction. The dynamical coherent
structures, §;(X,Y,t), for transitional grooved channel flow can be represented
by pairs of eigenfunctions with almost identical eigenvalues. For example, the
following definition represents the first order coherent structure of velocity

51(X: Y: t) = ¢u1(X: Y) a'l(t)z"i' ¢U1(XiY) a'l(t);

+hua(X, Y) az(t)i + ¢u2(X,Y) az(t)s. (15)
As observed, a pair of eigenfunctions/temporal coefficients not only contains
complete information on the typical shape of the corresponding coherent
structure, but also shows the evolution that the coherent structure undergoes
while moving in the streamwise direction (see Figs. 9-10).

4.3 Reconstruction of the flow field variables and
optimization of the mode retaining process

Sahan et al. [8-9] discussed the issue of optimal number of eigenmodes
retained in the LDMs. In order to achieve a useful LDM, one should: (i) keep
as few modes as possible in order to reduce the dimensionality of the
developed model, ii) retain enough modes so that the flow field variable, i.e.,
the velocity field, is reconstructed accurately and a proper dynamical
representation of the flow system is obtained and iii) capture most of the flow
fluctuation energy without losing the potentially critical information hidden in
the higher modes. However it should be mentioned that although the
reconstruction error is considerably reduced as the number of retained modes
increases, inclusion of relatively noisy higher eigenmodes may cause significant
performance loss for the low-dimensional models.

It is obvious that we wish to keep as few modes as possible in a
low-dimensional system, permitting us to apply the techniques of dynamical
system analysis. On the other hand, we would like to retain at least a
qualitatively correct dynamical representation of the transitional flow inside
the grooved channel. Although retaining two or three modes in the truncated
series expansion approximates the flow field successfully, capturing about 99%
of the total energy, the first three modes can not form an adequate basis for
the development of a valid LDM. The resulting LDM either does not produce
stable oscillations in time or fails to predict the correct amplitude and
frequency of oscillations. Keeping four, five or six modes in the truncated
series expansion leads to LDMs that predict correctly both the amplitude and
frequency of the oscillations. In the present study, it is found that although
retaining more than six modes captures the entire flow energy (about 99.9%),
the resulting LDM may not predict the flow system’s long-time dynamical



behavior accurately. If the noise introduced by higher modes is considerable,
the amplitudes and frequencies of the temporal expansion coefficients are not
estimated correctly. This explains why the results of the six-mode dynamical
model are presented in this paper.

4.4 Low-dimensional model predictions

Figure 8 shows the variation of the six expansion coefficients obtained by
direct projection of the input velocity data (full model) on the computed
eigenfunctions. Temporal expansion coefficients predicted by the six-mode
model are shown in Fig. 11 together with the direct projection results. The
results for the first four temporal modes are in good agreement (see Fig. 11).
However, in general, predictions for higher modes exhibit oscillations of
slightly larger amplitude than those calculated by direct projection. It is also
observed that temporal modes calculated using LDM have slightly larger
period than those calculated by direct projection. Similar results are obtained
by using either a four-mode or a five-mode LDM. As mentioned earlier, if the
order of the system of ODEs is further reduced, the resulting models do not
estimate the system’s dynamical behavior correctly. Comparisons between full
simulation data and the long-time six-mode model predictions in phase-space
are shown in Fig. 12.

5 CONCLUDING REMARKS

Two-dimensional transitional isothermal flow in a periodically grooved channel
has been numerically investigated and low-dimensional dynamical models have
been developed. A time-dependent solution in the transitional regime has been
analyzed by the method of empirical eigenfunctions (POD) and empirical
eigenfunctions and spatio-temporal structures of the flow have been extracted.
The eigenfunctions associated with the largest eigenvalues are the modes that
contain the largest fraction of the flow energy and explain the dynamical
behavior of the flow. Sets of ODEs were derived for the time-dependent modal
amplitudes.

The first six velocity modes contain almost all the flow fluctuation energy.
These modes occur in pairs and are phase-shifted both in space and time,
corresponding to travelling waves. These six modes reconstruct the flow
successfully. The predictions of the six-mode model was compared with the
full model results. Amplitudes of the first two modal pairs are in good
agreement. However, for higher modes, the six-mode LDM predicts mode
amplitudes that are slightly larger than those obtained by direct projection.
Keeping less than four modes in the truncated series expansion either does not
produce stable self-sustained oscillations in time or fails to predict the correct
amplitude of the oscillations.

Low-dimensional models of transitional isothermal flow reduce dramatically
the size of the computational problem. In addition, POD-based reduced



models may enable us to make stability, bifurcation and control analysis of the
flow system feasible with less computational effort and storage requirements.
In order to utilize the developed models in real-time flow control applications,
we have recently explored intelligent control strategies based on the derived
LDMs and the modeling and fast processing capabilities of artificial neural
networks [14,36].
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Table 1. The eight largest normalized eigenvalues and their cumulative
contribution to the total flow fluctuation energy.

mode seNormalized Cumulative
Eigenvalue Energy, %

1 0.51395 51.39

2 0.46741 98.14

3 0.00829 98.96

4 0.00767 99.72

5 0.00117 99.84

6 0.00113 99.95

7 0.00016 99.97

8 0.00015 99.99

Table 2. Normalized velocity empirical eigenfunctions. Maximum and
minimum stream function values.

b1 $2 ¢s $4
¢pmaz 0.1089 0.1113 0.0738 0.1014
¢_;min —0.1082 | —0.1047 | —0.0992 | —0.0851
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Fig. 1. Grooved channel geometry.
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h
Fig. 2. (a) Computational domain and boundary conditions. 2 - 0.75,
1

}IL_11 = 5.0, }% = 3.0. (b) Computational mesh. 44 spectral elements each with
9 x 9 collocation points.

Fig. 3. (a) Instantaneous velocity vector field. (b) Instantaneous
streamlines. Re = 430.

Fig. 4. Contribution of modes to the total flow fluctuation energy.

Fig. 5. Velocity empirical eigenfunctions.

Fig. 6. z-component of the velocity empirical eigenfunctions.

Fig. 7. y-component of the velocity empirical eigenfunctions.

Fig. 8. Temporal expansion coefficients computed by direct projection of the
snapshots on the eigenfunctions.

Fig. 9. Reconstructed z-component of the dominant spatio-temporal
structure. T —period of oscillation.

Fig. 10. Reconstructed y-component of the dominant spatio-temporal
structure. T —period of oscillation.

Fig. 11. Comparison of low-dimensional model predictions with full-model
results. Solid line: six-mode LDM predictions. Dotted line: direct projection
(full model).

Fig. 12. Phase plots of velocity temporal expansion coefficients. Solid line:
six-mode LDM.

Dotted line: direct projection (full model).
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