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Abstract. The stability of boundary-free shear flow is studied for the case of variable viscosity due to binary
diffusion across the shear layer. This leads to the main difficulty of this investigation, the direct coupling of
the momentum and species equations in both the base state calculations as well as the stability analysis.

Linear stability analysis is used to examine the effect of a nonuniform concentration profile on the stability
of the flow. It is found that for the flow to be stable for all disturbance wave numbers the Reynolds number
has to be zero. This is in agreement with constant viscosity free shear flow stability theory. Increasing the
magnitude of concentration gradient (increasing the Schmidt number) destabilizes the flow.

1. Introduction

The problem of predicting the stability characteristics of free shear flows is of great theoretical and practical
importance. These flows occur in systems of various scales. Large-scale examples are found in natural
processes in the atmosphere and the oceans. These geophysical flows include flows in stratified estuaries as
well as high shear regions in oceanic thermoclines and temperature inversions in the atmosphere. Medium-
and small-scale examples are those found in engineering systems, especially in environmental, aeronautical,
and industrial engineering applications. Such examples include wastewater discharges into bays, artificial
destratification in reservoirs, reacting free shear layer flows in combustors and rockets, flow of a polymeric
fluid or fluids-in-layer in polymer processing systems, and flows in dendritic- and plane-front solidification
of binary or multicomponent systems. In many of these systems, concentration gradients and diffusion of
species can play an important role in the structure and stability of boundary-free shear flows. In some of
these systems, fluid viscosity can be strongly dependent on the concentration. For example: the viscosity
of polymeric solutions and melts is sensitively dependent on concentration (Birdet al., 1987a, b), and the
viscosity of a mixture of gases can be a strong function of mole fractions (Maitlandet al., 1981). This work
focuses on the hydrodynamic aspects of isothermal free shear flows in which mass diffusion is present. It is
vital to understand the mechanisms that control the stability characteristics of these flows. In the context of
engineering systems this understanding allows for the design of processes that may either passively depend
on flow stability or may actively govern the development of the flow.

Boundary-free flows, such as mixing layers, wakes, and jets, are highly unstable when compared with
bounded flows. This is attributed to the presence of an inflection point in the velocity profile and the associated
inviscid instability. Boundary-free flows are characterized by lower values of the critical Reynolds number
at the onset of hydrodynamic instability (the highest Reynolds number for which the flow is stable for all
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wave numbers of a disturbance) and a larger range of wave numbers for which these flows are unstable
when compared with flows that do not have a velocity profile inflection. Specifically, the constant-property
incompressible free shear layer has a critical Reynolds number of zero, i.e., the flow is not stable for all
wave numbers at any finite value of Reynolds number,R.

Early studies of linear stability of mixing layers in incompressible parallel inviscid flows were performed
by Helmholtz (1868) and Kelvin (1871). The instability mode they discovered, referred to as Kelvin–
Helmholtz instability, involves a growing wavy disturbance across the surface of discontinuity in the initial
velocity field. Rayleigh developed his point-of-inflection theorem from the study of incompressible parallel
inviscid flows with continuous velocity profiles. Rayleigh’s theorem states that a necessary (but not sufficient)
condition for instability of inviscid flow is that the basic state velocity profile has an inflection point. Fjørtoft’s
theorem (Panton, 1984) improves on Rayleigh’s statement by being more selective. It shows that not all
profiles with an inflection point satisfy the necessary condition for instability. It was shown by Tollmien that
an inflection point is not only necessary but, in certain circumstances, a sufficient condition for instability,
as well.

The first stability investigation of a realistic free, boundary-layer type, parallel shear flow was reported
by Lessen (1950). Lessen’s power-series-expansion method of solving the stability equations allowed for
only studying the large Reynolds number limit. Therefore, he did not identify a Reynolds number for which
the flow was completely stable. Esch (1957) reported a critical Reynolds number of zero for a boundary-free
flow with a piecewise linear velocity profile. Tatsumi and Gotoh (1959) studied the stability of boundary-free
flows with a velocity profile of general form and reported that the critical Reynolds numbers for these flows
was zero.

Drazin and Howard (1962) studied the instability characteristics of the hyperbolic-tangent profile for
small wave-number disturbances. Later Michalke (1964) obtained the eigenvalues and eigenfunctions of
the inviscid Rayleigh equation for the same profile. Betchov and Szewczyk (1963) examined the stability
of a Newtonian viscous flow with hyperbolic-tangent profile by solving the Orr–Sommerfeld equation and
concluded that the flow is not stable for all wave numbers for any value of Reynolds number, i.e., the critical
Reynolds number is zero. A review of the linear stability theory is given in Betchov and Criminale (1967)
and Drazin and Reid (1981). A comprehensive review of the stability and the structure of the free shear
flows is given in Ho and Huerre (1984).

Compressibility and viscoelastic aspects of the mixing layer problem have also been investigated. Azaiez
and Homsy (1993) used linear stability analyses and direct numerical simulations to study the elastic effects
on the stability of two-dimensional incompressible mixing layers of viscoelastic fluids. Jackson and Grosch
(1989, 1990a, b, 1991) and Grosch and Jackson (1991) have studied the stability of unconfined compressible
nonreacting and reacting mixing layers. They performed inviscid spatial stability analysis to study various
aspects of the compressible mixing layers. Shin and Ferziger (1993) have studied the stability of the confined
compressible reacting mixing layer.

Jackson and Grosch (1990b) have conducted a stability calculation of a compressible mixing layer of a
gas mixture and have shown that the stability characteristics of the flow are dependent on the composition
of the gas mixture. Kennedy and Gatski (1994) performed a theoretical analysis of the structure of super-
sonic mixing layers in binary gas mixtures. Their analysis included the variation of fluid density with the
composition varying across the mixing layer. Jackson and Grosch (1994) have investigated the structure and
stability of a laminar diffusion flame in a compressible, three-dimensional mixing layer. These investigators
considered a three-dimensional, finite rate, reacting compressible mixing layer lying between two streams of
reactants with different freestream speed and temperature. The fluid viscosity is considered to be a function
of temperature. They employed numerical simulations and asymptotic analyses to study the flow structure
and the stability of the system for different flow regimes. More recently, Kozuskoet al.(1996a) have studied
the structure of compressible mixing layers in binary gas mixtures, in which both heat and mass diffusion are
present. They concluded that an accurate representation of the flow, temperature, and concentration fields
could only be obtained by considering variations in the thermal properties with composition and temperature.
The viscosity of the mixture was determined as a function of the mole fractions of the gases, the viscosity
of the individual gases, and of the interaction viscosity arising from collisions between the molecules of
the different gases. The viscosity of the individual gases as a function of temperature was calculated using
the first-order kinetic theory given by Maitlandet al. (1981). Kozuskoet al. (1996b) have investigated the
stability of parallel compressible mixing layers in binary gas mixtures by considering variations in the ther-
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mophysical properties of the gas mixture with temperature and composition. They showed that molecular
weights of the gases have a significant effect on the maximum growth rate, the phase speeds of the neutral
and the unstable modes, and the frequency of the most-unstable disturbances.

The nonparallel effects on the stability of boundary layer, mixing, and free shear flows have been studied
by several investigators. A number of investigators (Liu, 1974; Morris, 1971) have accomplished this using
integral formulations involving an equation for amplitude variation in the streamwise direction. The spatial
stability analysis of slowly diverging flows has been considered by Crighton and Gaster (1976) and Gaster
et al. (1985) to study large-scale structures in jet and mixing layer flows by employing a slowly varying
type of approximation or WKB method or a multiple scales arguments. Using a similar approach, Asrar
and Nayfeh (1985) and Nayfeh and El-Hady (1980) have studied the nonparallel effects in boundary-
layer flows when heat diffusion is present. They considered perturbations to the flow properties and to the
physical properties of the fluid (density, viscosity, thermal diffusivity, and specific heat capacity are treated
as functions of temperature). These authors studied the stability of both self-similar and nonsimilar base flow
over a nonuniformly heated flat plate. They concluded that nonparallel effects hardly modify the stability
characteristics of this flow but relaxing the self-similar assumption significantly alters the critical conditions
and spatiotemporal nature of the secondary flow. Their results agree qualitatively with the experimental
measurements of Strazisar and Reshotko (1978) when nonsimilar flow profiles are considered.

Stability calculations of two- and three-dimensional mixing layer flows have been reported. Corcos and
Lin (1984) considered the three-dimensional instabilities of an evolving two-dimensional base flow. More re-
cent studies of free shear flows investigate the transition to turbulence by considering large Reynolds numbers
or nonlinear instability mechanisms. Metcalfeet al. (1987) examined the effects of the interaction between
linear and nonlinear flow states on stability in the transitional regime by considering three-dimensional
perturbations to two-dimensional base flow. Rogers and Moser (1992) studied the temporal development of
a three-dimensional mixing layer through direct numerical simulations based on the three-dimensional un-
steady Navier–Stokes equations. Sullivan and List (1994) examined the mixing and transport of a stratifying
scalar at a density interface embedded in a turbulent shear flow.

In this paper we investigate the effect of viscosity variation with composition on the stability characteristics
of an incompressible boundary-free shear flow. The combination of the species transport with the momentum
transport phenomenon renders the fluid viscosity a function of the concentration level and leads to direct
coupling of these two occurrences. Both the momentum (velocity) layer and concentration (mixing) layer
equations are considered in the analysis. The basic flow equations as well as the stability equations are
coupled.

The equations governing the free shear flow and the concentration field are described in Section 2. A
similarity solution for the steady basic state velocity and concentration fields are presented together with
equations governing the temporal stability of parallel boundary-free shear flows. The numerical techniques
used to solve the basic state equations and the eigenvalue problem for the stability equations are also
described in Section 2. The results are presented and discussed in Section 3 and conclusions are summarized
in Section 4.

2. Formulation

In deriving the governing equations for the momentum transport and diffusion in the shear layer shown in
Figure 1, we begin with the continuity, momentum, and species equations, assuming Newtonian fluid of
constant density:

∇ · u = 0 (1a)

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p +∇ · (µγ̇), (1b)

∂c

∂t
+u · ∇c = ∇ · (D∇c). (1c)

Hereu denotes the velocity vector,p is the pressure,µ denotes the absolute viscosity, ˙γ is the rate-of-strain
tensor,ρ is the density,D is the binary mass diffusion coefficient, andc is the concentration.
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Figure 1. Flow schematic.

The far-field boundary conditions are

y → +∞, u→ (U1, 0, 0), and c→ C1, (2a)

y → −∞, u→ (U2, 0, 0), and c→ C2, (2b)

whereU1,U2,C1 andC2 are the flow velocities and concentrations of the two initially separated fluid layers.
The viscosity of the fluid is approximated by

v =
µ

ρ
= v0(1 +ac2), (3)

wherea is a positive number andv0 is the kinematic viscosity at the reference state. This relation is derived
by noting thatvsp/c versusc has a positive linear slope, wherevsp = v/v0− 1 (Shoemakeret al., 1974).

2.1. Basic State Equations and Numerical Solution

In order to calculate the basic state steady velocity and concentration fields we implement standard boundary-
layer analysis assuming that the basic state velocity in thex-direction is much greater than in they-direction,
and gradients of the basic state velocity and concentration normal to thex-direction are much larger than
those parallel to it (Schlichting, 1979; Incropera and DeWitt, 1990). The governing equations for the steady
basic state velocity and concentration fields are written as

∂us
∂x

+
∂vs

∂y
= 0, (4a)

us
∂us
∂x

+ vs
∂us
∂y

=
∂

∂y

(
vs
∂us
∂y

)
, (4b)

us
∂cs
∂x

+ vs
∂cs
∂y

= D
∂2cs
∂y2

, (4c)

where (us, vs) denote the streamwise and transverse components of the basic state velocity field,cs is the
basic state concentration field, andvs is the fluid viscosity, defined byvs = v0(1 +ac2

s).
The velocity components are written in terms of a stream function,ψ(x, y), i.e., us ≡ ∂ψ/∂y and

vs ≡ −∂ψ/∂x. The continuity equation is now satisfied and no longer needed. We next define a similarity
parameterη(x, y) = y/δ. Noting that the boundary layer thicknessδ is given byδ ∝ (v0x/U1)1/2, the
similarity variableη can be written as

η ≡ y
√
U1

v0x
(5)

while the stream function, velocity components, and concentration can now be written in terms ofη:
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ψ = f (η)
√
v0x

U1
, us = f ′, vs =

1
2

√
v0

U1x
(ηf ′ − f ), and cs = g(η). (6)

Note that (us, vs) is now measured in units ofU1, cs in units ofC1, andvs in units ofv0. Substituting (6)
into the momentum and species equations (4b,c) we obtain the following nonlinear differential equations
for f (η) andg(η):

f ′′′ +
1
vs
f ′′
(

1
2f + v′s

)
= 0, (7a)

g′′ +
Sc

2
fg′ = 0, (7b)

where primes denote derivatives with respect toη and the Schmidt number,Sc, is defined asv0/D. The
boundary conditions forf andg are

η →∞, f ′ → 1, and g → 1, (8a)

η → −∞, f ′ → U∗, and g → C∗, (8b)

f (0) = 0, (8c)

whereU∗ = U2/U1 andC∗ = C2/C1. Boundary condition (8c) implies that aty = 0, where the initial mixing
occurs, the stream function must be equal to zero since the motion is steady.

In order to discretize the problem, the domain (−∞ < η < +∞) is truncated to (−L ≤ η ≤ +L). The
base state velocity and concentration fields (f andg) are expanded in a series of Chebyshev polynomials.
These expansions are simplified by transforming variableη of the computational domain (−L ≤ η ≤ +L)
to ξ = η/L, so that the new variable satisfies (−1 ≤ ξ ≤ +1). The transformed set of ordinary differential
equations are solved using the Galerkin technique developed by Zebib (1987), in which the highest derivative
of the functionsf andg are approximated by truncated sums of the form

f ′′′(ξ) =
N∑
i=0

b1iTi(ξ) and g′′(ξ) =
N∑
i=0

b2iTi(ξ), (9)

whereTi is theith Chebyshev polynomial and the coefficients{bji} for j = {1, 2} are to be determined.
Representations of the lower-order derivatives and the functionsf andg are computed by integrating (9)
and using standard properties of the Chebyshev polynomials.

The Galerkin procedure reduces the problem ((7) and (8)) to a nonlinear algebraic vector equation
which is solved using the standard Newton’s Acceleration of Convergence method. The details of this
iterative method are discussed elsewhere byÖztekinet al. (1997). The iterative procedure is terminated
when solutions obtained from two successive iterations differ less than one part in 1012. Newton’s method
reduces the problem to a set of linear algebraic equations of the form

Ex = F , (10)

wherex = δ[b1n, b2n, b3n, b4n, b5n] ∈ R5(N+1) is the perturbation vector of the coefficients. Elements of
the coefficient matricesE andF are in the domainR5(N+1). The perturbation vectorx at each iteration is
computed using the algorithm coded in DLSLRG of the IMSL library.

2.2. Linear Disturbance Equations and Numerical Solution

Equations governing the linear stability of the base flow are formed by measuring length, velocity, concen-
tration, pressure, and time in units ofδ, U1,C1, ρU2

1 , δ/U1, respectively. To determine the conditions under
which a disturbance grows, we assume a quasi-two-dimensional flow (parallel flow) approximation (vs = 0),
where the disturbances are analyzed at a fixedx location. Due to the fact that the base state velocity in the
x-direction (us) and the concentration (cs) are dependent on the functionsf (η) andg(η), andx is fixed, these
variables depend only ony for the disturbance equations. We also assume two-dimensional time-dependent
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disturbances for thex andy velocity components as well as the concentration. The perturbed velocity,
pressure, and concentration field is written as

û
v̂
p̂
ĉ

 (x, y, t) =


f ′

0
ps
g

 (y) +


u
v
p
c

 (x, y, t), (11)

where (û, v̂) are the dimensionless streamwise and transverse components of the velocity field, ˆp is the
pressure, ˆc is the concentration field, (u, v) are the components of the disturbance velocity field,p is the
disturbance pressure,c is the disturbance concentration field, andps is the basic state pressure.

Substituting (11) into (1)–(3), subtracting the base state, and retaining only terms that are linear in the
disturbance amplitude, yields the dimensionless disturbance equations

∂u

∂x
+
∂v
∂y

= 0, (12a)

∂u

∂t
+ f ′

∂u

∂x
+ f ′′v = −∂p

∂x
+

1
R

(
vs

(
∂2u

∂x2
+
∂2u

∂y2

)
+ v′s

(
∂u

∂y
+
∂v
∂x

)
+ f ′′

∂v

∂y
+ f ′′′v

)
, (12b)

∂v
∂t

+ f ′
∂v
∂x

= −∂p
∂y

+
1
R

(
vs

(
∂2v
∂y2

+
∂2v
∂x2

)
+ 2v′s

∂v
∂y

+ f ′′
∂v

∂x

)
, (12c)

∂c

∂t
+ f ′

∂c

∂x
+ g′v =

1
RSc

[
∂2c

∂x2
+
∂2c

∂y2

]
, (12d)

where, based on (3), the disturbance to the viscosity isv = 2acsc. The Reynolds number is defined as
R = (U1δ/v0).

The boundary conditions on the disturbances to the velocity and concentration fields are

η →∞, (u, v, c)→ (0, 0, 0), (13a)

η → −∞, (u, v, c)→ (0, 0, 0). (13b)

We analyze the temporal stability of parallel flow and restrict the analysis to disturbances that are localized
in x. The spatial dependence of each disturbance can be separated, if the disturbance is written in the Fourier
form as 

u
v
p
c

 (x, y, t) =


U (y)
V (y)
P (y)
κ(y)

exp(iαx + βt), (14)

whereα is the dimensionless wave number of the disturbance (which can be positive or zero),β is the
dimensionless temporal eigenvalue (which can be complex),P (y) is the amplitude of the disturbance to the
pressure,κ(y) is the amplitude of the disturbance to the concentration, andU (y) andV (y) are the amplitudes
of the disturbances to the streamwise and transverse components of the velocity, respectively.

Equation (12a) is satisfied by introducing a disturbance stream function,ψ, such thatu = ∂ψ/∂y and
v = −∂ψ/∂x. In view of equation (14),ψ = ϕ(y) exp(iαx+βt) whereϕ is the amplitude of the disturbance
to the stream function. From the relations between the velocity components and stream function we write
the amplitudes of the disturbances to the velocity asU (y) = ϕ′(y) andV (y) = −iαϕ(y).

Substituting (14) into (12), eliminating pressure, and using the stream function representation for the
velocity, yields

αR

[(
f ′ − iβ

α

)
(iα2ϕ− iϕ′′) + if ′′′ϕ

]
=
[
(1 +ag2)(ϕ′′′ − α2ϕ′) + 2agg′(ϕ′′ + α2ϕ) + 2a(gf ′′κ)′

]′
−α2[(1 + ag2)(ϕ′′ − α2ϕ) + 4agg′ϕ′ − 2af ′′gκ] = 0, (15a)

βκ + f iακ− iαg′ϕ +
1

RSc
[α2κ− κ′′] = 0. (15b)
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Figure 2. Basic state concentration profiles computed forU∗ = 0.5, C∗ = 0.5, and values of Schmidt numberSc = 0.1, 1.0, 10.0.
Results are presented for (a)a = 0.1, (b)a = 1.0, and (c)a = 10.0.

The associated boundary conditions are

ϕ(+∞) = ϕ′(+∞) = κ(+∞) = 0 (16a)

and
ϕ(−∞) = ϕ′(−∞) = κ(−∞) = 0. (16b)

Equations (15) and (16) describe an eigenvalue problem for the growth rateβ and the eigenfunctions
κ(y) andϕ(y) as functions of the wave number,α, and the dimensionless parameters (R, Sc, a, L). This
eigenvalue problem is solved by using the Galerkin technique described in detail in the previous section. A
similar set of stability equations has been reported by Pinarbasi and Liakopoulos (1995) in their analysis of
the effects of variable viscosity on two-layer Poiseuille flow.

The Galerkin/Chebyshev procedure reduces the stability equations and boundary conditions to generalized
matrix eigenvalue problem of the form

(A + βB)x = 0, (17)

wherex ∈ R2(N+1) are the components of the discretized eigenvectors. The elements of the square matrices
A andB in (17), each inR2(N+1)x2(N+1), depend on the set of parameters (α, R, Sc, a, L). The solution of
the algebraic eigenanalysis problem (17) is computed using the algorithm DGVCCG available in the IMSL
library. The detailed description of the numerical method can be found inÖztekinet al. (1997).

For givenSc, L anda the stability of the boundary-free shear flow is expressed by neutral stability
curvesR = R(α) for which Real(β) = 0. These curves are determined by computing the growth rateβ for
fixed values of (α, Sc, L, a) at several values of Reynolds numberR and consequently using bisection to
determine the critical value ofRcr(α) as Real(β) approaches zero. These searches are carried out to one part
in 105.

3. Results and Discussions

Stability calculations are presented for various values of Schmidt numberSc and the viscosity parametera.
Calculations are reported for the basic state, followed by calculations for the stability characteristics of the
base flow.

The effects of a diffusion layer and viscosity variation on the basic state were explored for a Schmidt
number in the range of 0.1< Sc < 10.0, and the viscosity parameter,a, of 0.1< a < 10.0.

The basic state velocity and concentration profiles are presented for domain sizeL = 20. As long asL is
large enough to allow the limits of the profiles to approach approximately the specified far-field boundary
conditions, the base state profiles do not vary asL is changed. Basic state concentration profiles are shown
in Figure 2 for the values of Schmidt numberSc = 0.1, 1.0, and 10.0 and fora = 0.1, 1.0, and 10.0. Note
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Figure 3. Basic state velocity profiles computed for free shear flows forU∗ = 0.5,C∗ = 0.5, and the values ofa = 0.1, 1.0, and 10.0.
Results are presented for (a)Sc = 0.1, (b)Sc = 1.0, and (c)Sc = 10.0.

Figure 4. (a) Basic state concentration profiles and (b) velocity profiles fora = 1.0,Sc = 1.0,U∗ = 0.5, and various values of the ratio
of far-field concentrations,C∗.

that for a fixed value ofSc there is little variation in the concentration profile with varyinga. We also note
that as the value ofSc increases, the concentration profile becomes accordingly steeper, approaching a sharp
interface.

The base state velocity profileu = u(η), computed for various values ofSc anda, is shown in Figure 3.
The velocity profiles change little with Schmidt number for low values ofa, while the velocity profile varies
significantly for larger values ofa. AsSc is increased to 10.0, however, the effects ofa almost vanish, and
theu velocity profiles are very similar for all values ofa. This indicates that asSc is increased a limiting
base state condition may be approached. The effects of these parameters on the stability of the flow will
be explored later. It should be noted that these profiles are computed forU∗ = 0.5 andC∗ = 0.5. These
parameters are used throughout, unless otherwise stated.

The effect of varyingC∗ andU∗ on the basic state velocity and concentration profiles are illustrated in
Figures 4 and 5 forSc = 1.0 anda = 1.0. We note that forC∗ > 1 theu velocity profile changes more
gradually and approaches the free stream velocity more slowly in the regionη < 0. ForC∗ < 1 the velocity
profile changes more abruptly than for the case of zero concentration gradient (C∗ = 1.0), as shown in
Figure 5. This can be explained by the fact that in the case ofC∗ > 1 the diffusion slows the momentum
change in the regionη < 0, due to the relation of viscosity with concentration. When the direction of the
diffusion is reversed (C∗ < 1), the momentum change is increased in theη < 0 region due to the lower
level of concentration. We also note that the concentration profile changes more gradually forη < 0 as
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Figure 5. (a) Basic state velocity profiles and (b) concentration profiles fora = 1.0,Sc = 1.0,C∗ = 0.5, and various values of the ratio
of far-field velocities,U∗.

Figure 6. Stability boundaries (a)Rcr = Rcr(H) and (b)αcr = αcr(H) computed for jet flow with base velocity profileu =
sech2(y).

U∗ is increased. This is due to the fact that the increased flow velocity in theη < 0 region slows the rate
of diffusion. These results clearly show that the coupling between the base state momentum and diffusion
equations is properly occurring. The effect of these trends on the stability of the flow will be discussed later.

The stability code was first tested by calculating the stability of laminar jet flow of the formu =
U sech2(y/H), whereH denotes the half-width of the jet andU is the centerline velocity. We first compute
the neutral stability curvesR = R(α) for a fixed value of domain sizeL (L is equivalent toH), and then
determine the critical value of Reynolds number,Rcr, for each domain sizeL. Note that corresponds to the
minimum in the neutral stability curveR = R(α). ForR > Rcr(αcr) the flow is unstable to disturbances in
some range of the wave numberα, while forR < Rcr(αcr) the flow is stable for all values ofα.

The critical Reynolds numberRcr and the wave numberαcr are plotted in Figure 6 versus the domain size
L. The critical Reynolds number decreases monotonically asL increases and asymptotically approaches
Rcr = 4. Similarly, the critical wave number asymptotes to 0.17 asL increases. The critical parameters
predicted here for free jet flows are in good agreement with the stability results of Tatsumi and Kakutani
(1958). This ensures that the numerical code employed to solve the disturbance equations predicts stability
results that are consistent with previous stability studies of laminar jet flow.

The accuracy of the Galerkin/Chebyshev approximation for the eigenvalue problem (17) was tested by
checking the spectral convergence of the most unstable eigenvalue (the eigenvalue with the smallest real
part). The real part of the least stable eigenvalue is plotted in Figure 7 as a function of the number of
Chebyshev polynomialsN in the expansions for parameter values ofα, L, R and fora = 1.0, Sc = 1.0,
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Figure 7. Real part of the least stable eigenvalueβ, Re(β), versusN computed forR = 100,a = 1.0,Sc = 1.0,U∗ = 0.5,C∗ = 0.5,
and computational domain sizes ofL = 20, 30, 50, and 100. Results are presented for (a)α = 0.1 and (b)α = 0.001.

Figure 8. The profiles of (a) the real (solid curves) and (b) imaginary (dashed curve) parts of the disturbance stream function,ϕ(y)
for 20 ≤ N ≤ 40, withR = 10.0, Sc = 1.0, α = 0.1, a = 1.0, C∗ = 0.5, andU∗ = 0.5.N is the number of the Chebyshev poly-
nomials.

U∗ = 0.5, andC∗ = 0.5. ForR = 100 and different values of computational domain sizeL, Figure 7 shows
the real part of the least stable eigenvalue, Re(β) plotted versusN . As shown in Figure 7 forR = 100, the
Re(β) converges to one part in 103 for allL forN of about 15 and 20 forα = 0.1 andα = 0.001, respectively.
Similar spectral convergence is observed for different values of system parameters. We useN ≥ 30 in the
stability calculations to compute the neutral stability curves and diagrams presented below.

The profiles of the real and imaginary parts of the disturbance stream function,ϕ(η), computed for
R = 10.0, Sc = 1.0, α = 0.1, a = 1.0,C∗ = 0.5, andU∗ = 0.5 are shown in Figure 8. For computational
domain sizeL = 50 the disturbance stream function is plotted forN = 20, 30, 35, and 40. Both the real,
Re(ϕ), and imaginary, Im(ϕ), parts of the disturbance stream function converge asN is increased.

The growth rate (the real part of the least stable eigenvalue) Re(β) is shown in Figure 9 as a function
of wave number,α, for different values of Reynolds number withL = 100. Note that the value of Re(β)
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Figure 9. Growth rate, Re(β) versus wave number,α, for L = 100,a = 1.0, Sc = 1.0, U∗ = 0.5,C∗ = 0.5, and 0.2 ≤ Re ≤ 0.5.

Figure 10. Neutral stability curveR = R(α) illustrating stable and unstable regions, critical wave number, critical Reynolds number,
and lower and upper branch. Plotted forL = 50,a = 0,U∗ = 0.5, andC∗ = 0.5.

increases at all values ofα, asR is increased. Therefore, the flow becomes less stable with increasingR, as
is expected.

The neutral stability curveR = R(α) is formed from the computation of growth rates for various values
of L. These curves determine the stable and unstable regions in the (R, α) plane. At a fixedR, the values of
wave number on the neutral curve are found for which Re(β) = 0. For the family of the flows examined in
this work, two values ofα satisfying Re(β) = 0 are found for eachR above the critical Reynolds number.
These points are plotted for a number of differentR and formed into curves. The curve formed by the lower
values ofα is known as the lower branch, and, likewise, the largerα curve is the upper branch. The location
where these curves meet determines the minimum point for the entire neutral curve and yields the critical
Reynolds numberRcr. Likewise, the corresponding value ofα at this minimum is referred to asαcr. We first
choose the case with constant viscosity (a = 0) and create neutral curves (R versusα) for different values
of L. Figure 10 illustrates the plot of the neutral curve forL = 50. Here, the stable and unstable regions are
labeled, as well asRcr, αcr, and the lower and upper branches.
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Figure 11. Neutral stability curvesR = R(α) for computational domain sizes, 5≤ L ≤ 200. Plotted fora = 0,U∗ = 0.5, andC∗ = 0.5.

Figure 12. Neutral stability curvesR = R(α) computed forU∗ = 0.5,C∗ = 0.5 and various values of Schmidt number,Sc = 0.1, 1.0,
and 10.0. Results shown for (a)a = 0.1 and (b)a = 1.0.

As the value ofL increases, the lower branch of the neutral curve shifts downward (the unstable region
in R–α plane becomes larger), or rather the values ofα for Re(β) = 0 are smaller for correspondingR
(see Figure 11). The limit ofα for stability at a given Reynolds number varies inversely withL. This trend
strongly suggests that a nonzero Reynolds number where the flow will be stable for all values ofα does not
exist, and that the flow must be unstable for allR. Similar results are obtained for the variable viscosity case
a 6= 0 as well.

In order to investigate the effects of diffusion and viscosity stratification on the temporal stability of the
parallel shear flow, the neutral stability curves are calculated for various values ofSc anda. These results
are summarized in Figure 12 where the neutral stability curvesR = R(α) for a of 0.1 and 1.0 and for
Sc = 0.1, 1.0, and 10.0, withL = 40, are presented. Fora = 0.1 there is almost no difference between the
neutral stability curves predicted forSc = 0.1 and 1.0, as shown in Figure 12(a). As the Schmidt number is
increased to 10.0, it is apparent that the flow becomes less stable andRcr decreases to about 1.6. It should
be noted, however, that for a relatively small value of a the limit to which the upper neutral curve converges
to asL grows, changes very little withSc, as might be expected. For larger values of a the effects ofSc
are more pronounced on both lower and upper branches of the neutral curve. AsSc increases the unstable
region in theR–α plane becomes larger and the critical Reynolds number becomes smaller. Note that for
small values ofα (lower branch) the diffusion and viscosity stratification destabilize the flow whereas for
largerα (upper branch) these effects diminish as Reynolds number increases.
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4. Conclusions

A linear stability analysis of boundary-free shear flows has been presented. The effect of diffusion and
viscosity stratification due to the concentration gradient on the stability characteristics of the shear flow has
been investigated. It has been found that the base shear flow is destabilized with increasing value ofSc,
indicating that species diffusion has a destabilizing influence on the boundary-free shear flow. It has also
been shown that viscosity stratification due to the presence of a concentration gradient has a destabilizing
effect on the shear flow. These destabilizing effects of diffusion and viscosity stratification are stronger on
the lower branches of the neutral stability curves than on the upper branches (see Figure 12).

The critical Reynolds number above which shear flow becomes unstable,Rcr, remains zero despite the
presence of transport of species and the viscosity variation due to the concentration gradient. This trend is
consistent with the fact that the flow appears to be destabilized with increasing effects of a concentration
gradient and the viscosity stratification, or more explicitly, increasingSc and viscosity parametera. There-
fore, it would not be expected that the effects of concentration would give way to the flow having a nonzero
critical Reynolds number. From a physical point of view, these results can be explained by the fact that
the transport of species through the shear layer may serve as an additional disturbance-causing mechanism,
where diffusion must excite rather than dampen infinitesimal disturbances.

Another aspect of the problem that may have to be explored is the assumption of parallel flow in the
stability analysis. Due to the fact that we are concerned with lowR boundary-free flows, the assumption
that v(y) is much less thanu(y) may be invalid. Although, the inclusion of they-direction base velocity
component in the stability analysis will considerably complicate the problem, it may prove necessary in
accurately predicting the stability characteristics of the flow. A nonzero critical value ofR is expected when
nonparallel effects in the base flow are included.

Since the mean velocity profile is slowly varying in the streamwise direction, the first order corrections
to the parallel stability analysis can be made by a multiple scale expansion in terms of a suitable small
parameter defining the slow variation of the mean flow (Crighton and Gaster, 1976; Gasteret al., 1985;
Nayfeh and El-Hady, 1980; Asrar and Nayfeh, 1985). This method essentially reformulates the problem
as a stability analysis of a “locally parallel flow” and generates a correction to the parallel flow stability
calculations. The amplitude of the disturbances varies in the streamwise direction and satisfies an appropriate
amplitude equation (see details in Crighton and Gaster (1976)). The disturbances, in fact, can peak at some
downstream locations. These flow features have been observed in early experiments in jets and other free
shear flows (Crow and Champagne, 1971; Moore, 1977), but they cannot be predicted by parallel flow
stability analysis. The nonparallel contributions could be more significant when the fluid properties are
dependent on temperature or concentration as is the case in the present work. These effects are currently
being examined.

References

Asrar, W., and Nayfeh, A.H. (1985) Nonparallel stability of heated two-dimensional boundary layers.Phys. Fluids28, 1263–1272.
Azaiez, J., and Homsy, G.M. (1993) Linear stability of free shear flow of viscoelastic liquids.J. Fluid Mech.268, 37–69.
Betchov, R., and Criminale, W.O. (1967)Stability of Parallel Flows. Academic Press, New York.
Betchov, R., and Szewczyk, A. (1963) Stability of a shear layer between parallel streams.Phys. Fluids6(10), 1391–1396.
Bird, R.B, Armstrong, R.C., and Hassager, O. (1987a)Dynamics of Polymeric Liquids, Volume 1, 2nd edition. Wiley Interscience, New

York.
Bird, R.B., Curtiss, C.F., Armstrong, R.C., and Hassager, O. (1987b)Dynamics of Polymeric Liquids, Volume 2, 2nd edition. Wiley

Interscience, New York.
Corcos, G.M., and Lin, S. (1984) The mixing layer: deterministic models of a turbulent flow.J. Fluid Mech. 139, 67–95.
Crighton, D.G., and Gaster, M. (1976) Stability of slowly diverging jet flow.J. Fluid Mech. 77, 397–413.
Crow, S.C., and Champagne, F.H. (1971) Orderly structure in jet turbulence.J. Fluid Mech. 48, 547–591.
Drazin, P.G., and Howard, L.N. (1962) The instability to long waves of unbounded parallel inviscid flow.J. Fluid. Mech. 14, 257–283.
Drazin, P.G., and Reid, W.H. (1981)Hydrodynamic Stability. Cambridge University Press, Cambridge.
Esch, R.E. (1957) The instability of a shear layer between two parallel streams.J. Fluid. Mech. 3, 289–303.
Gaster, M., Kit, E., and Wygnanski, I. (1985) Large-scale structures in a forced turbulent mixing layer.J. Fluid Mech. 150, 23–39.
Grosch, C.E., and Jackson, T.L. (1991) Inviscid spatial stability of a three-dimensional compressible mixing layer.J. Fluid Mech. 231,

35–40.
Helmholtz, H. (1868) Discontinuous fluid motions.Monatl. Konigl. Preuss. Akad. Wiss. Berlin23, 215–288.
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