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P = fluid density
T = wall shear stress

Explicit Representations
of the Complete Velocity Profile
in a Turbulent Boundary Layer
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Nomenclature
B = constant in the logarithmic law
e(y*) =difference of the approximation, Eq. (10)
/(y*) =function representing the law of the wall

g = function representing the law of the wake

Re, = Reynolds number based on momentum thickness
u =mean velocity component parallel to the wall

u, = mean velocity at the boundary-layer edge

u, = friction velocity, (7., /p) ¥

u* =dimensionless u velocity, u/u,

w = wake function

y =coordinate normal to the wall

y* =dimensionless distance from the wall, yu, /v

O

, 6,0 =boundary-layer, displacement, and momentum
thickness, respectively ’
=von K&rman constant
= molecular kinematic viscosity
I = Coles wake parameter
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Introduction

T is well known that most of the commonly used turbulence

models lead to parabolic systems when coupled with the
boundary-layer equations. Consequently, starting a dif-
ferential method of predicting turbulent boundary layers
requires the specification of initial profiles for the dependent
variables. For this purpose, an accurate and computationally
convenient expression for the mean velocity distribution is of
particular importance to users of existing computer codes and
to developers of new calculation methods. For the problem at
hand, a ‘“‘computationally convenient’’ formiila means a
representation of the mean-velocity profile which has some or
preferably all of the following characteristics: I) it is a closed-
form expression, 2) it gives u explicitly as a function of y, 3) it
is valid over the whoie width of the boundary layer, and 4) it is
relatively easily evaluated. The objective of this Note is to
provide such a formula for external boundary layers and pipe
flows. The analysis holds for two-dimensional incompressibie
turbulent flow past a smooth surface but (being within the
framework of the wall-wake similarity laws) fails in the cases
of relaxing flows and flows characterized by the presence of
very large positive or negative pressure gradients.'

Coles? has shown that an expression of the form

u*:ll'uy“+B+g(H, Z) (1
. K 6

provides an accurate fit to experimental velocity data for both
equilibrium and nonequilibrium turbulent boundary layers
for y* >50. However, in order to obtain velocity profiles
valid over the whole width of the boundary layer one can
write Eq. (1) in a slightly different way

ut=f(y*)+g(I, y/8) (2)

where f(y*) is a representation of the law of the wall valid
over the whole inner layer and is asymptotic at large y* to
(1/x) ty* + B. Function g(II,y/6) is a representation of the
law of the wake. In Egs. (1) and (2), 1T is Coles’ wake para-
meter.! For the function g (II,y/6) we adopt the expression

((0.3)-Larm Q)L Q) o

proposed independently by Finley et al.,> Granville,* and
Dean.’ Equation (3) is an improvement over the more widely
used form

(@ )-Le)Bw(32) o

since it describes more accurately the true boundary con-
ditions on the wake function.* In the present analysis it is
assumed that in addition to u, and » the parameters u,, §, and
IT are known at the streamwise station in question. This is not
a stringent requirement since any one of the five parameters
u,, 8, II, 8*, 6 can be determined if two of them are known.'

Inner Layer (Law of the Wall)

A large variety of analytical representations of the law of
the wall have been proposed, characterized by various levels
of complexity and accuracy. Spalding’s implicit formula may
be considered the most widely used and is adopted by White®
and Dean’® as the accepted form of the law of the wall.

Spalding” has shown that Laufer's experimental data® for
the mean velocity distribution in the inner layer are well fitted
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by formulas of the form

n=(

y*r=ut +e=<t [e(u+_ E_(""’:#)"] (5)

where =3 or 4 and x and B are the parameters of the
logarithmic law. Equation (5) satisfies (for {=3) or excesds
(for {=4) Reichardt’s cubic power law for the eddy viscosity
in the immediate neighborhood of the wall. Furthermore, it is

asymptotic at large y* to the logarithmic law

u* =(1/x)tay* +B.

In what follows a very simple procedure of obtaining ex-
plicit analytical approximaticn of Eq. (5) is described. Then, a
new formula is proposed which fits better the experimental
data. The constants « and B are taken as 0.41 and 5.0,
respectively' throughout this work.

Assuming f=3 and differentiating Eq. (5) we obtain

d + ' +32
A =1+xe“‘[e“"—]—(xu*)—u] (6)
du* 2
which by taking into account Eq. (5) can be written as
du* 1
)

dy*  I+xly* —u*+e-2[(xu’)2/6])

Figure 1 shows a plot of du* /dy* vs y*. This function can
be accurately approximated over the infinite interval [0, o] by
a rational function of the form

(*) i +ay* +a,

)+, (%) +b,y* +b, -

R(y*)=1-y*
which correctly emulates the asymptotic behavior of
du*/dy* provided that

by—a,=1/x=2.44 e)
Under this condition, the difference

du*

dy*

e(y*)= -R(y*) (10)

vanishes asymptotically as y* —oo. Moreover, the difference
is zero at y* =0. The value of the coefficients a,, a;, by, b,
b, can be conveniently determined by imposing the condition
e(y*) =0 at four points and Eq. (9). A series of numerical
experiments have shown that a very good approximation of
the function defined by relations (7) and (5) (for ¢=3) is
achieved by imposing the condition e(y*) =0 at y* =(2.0,
6.0, 10.0, 20.0). The corresponding values of the coefficients
are: a,=6.0256, a,= -4.633, b,=222.31, b,=16.507,
b, = —2.193.1 Analytical integration of Eq. (8) yields

ut =(“[ ()" +4.67)1‘2l (y+2—6.82)’+ +48.05)0'""]
+4.22tan"'(0.166y* —0.565) —1.67 (an

which is in good agreement with Eq. (5). The relative dif-
ference is less than 0.8% for 1<y* <2 and becomes
significantly smaller for larger values of y*. The above
technique has been applied to the case (=4. The resulting

11t shouid be noted that if a Remes-type algorithm is employed
using the obtained approximation as initial guess it will converge to
the best (in the Chebyshev sense) rational approximation.®'?
However, this is not necessary considering: 1) the very good ap-
proximation achieved by the simple interpolation procedure and 2) the
nature of the approximated function (function generated by curve
fitting of scattered experimental data).
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approximation is

u+_&‘[ (* +5.85)%% ]
(y*1—9.25y+ +58.5)93

+4.16tan~" (0.164y* —0.759) — 1.45 (12)

The relative difference is less than 0.82% over the interval
[1,2], being significantly smaller for larger arguments.

Plots of Eq. (5) for {=3 (curve I) and f=4 (curve II) are
shown in Fig. 2 where comparison is made with the ex-
perimental data of Lindgren,'" Perry,! Patel and Head, 2 and
Durst.!? Spalding,” based on Laufer’s data,® was unable to
say which of the two curves gives the more precise fit.
However, consideration of the experimental data shown in
Fig. 2 indicates that curve I gives a better fit for y* <12 and
curve II shows bet:zr agreement for y* >20. Thus, a function
which closely follows curve I in the immediate neighborhood
of the wall turns at y* = 12 and merges smoothly into curve 11
in the vicinity of y* =20 describes better the data. Following
the procedure described above one obtains the following
representations of the law of the wall:

()’*,+11)“” ]

u"=f«[ >4
(y* =7.37y+ +83.3)07

+5.63tan~'[0.12y* —0.441) —3.81 (13)

The extent to which Eq. (13) fits the data can be judged by
inspection of Fig. 2. It should be noted that Eq. (13) is based
on no new physical assumptions and correlates data of
nonuniform accuracy, obtained from experimental in-
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Fig. 1 Dimensionless velocity gradient according to Egs. (7) and (5).
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Fig. 2 Comparison of calculated and experimental velocity profiles
in the buffer layer. Curve I: Eq. (5), {=3. Curve II: Eq. (5), (=4.
—: Eq. (13).
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vestigations that have been carried out in different pieces of
apparatus.

Conclusions

Any of Egs. (11), (12), or (13) together with Eq. (3) give an
explicit, closed form representation of the mean velocity
profile in a turbulent boundary layer which is valid over the
whole width of the boundary layer and fits well the ex-
perimental data. Equations (11) and (12) are accurate explicit
approximations of Spalding’s formulas for the law of the wall
for =3 and f=4, respectively; while Eq. (13) is a represen-
tation of the law of the wall which better fits the experimental
data.
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