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a b s t r a c t

The effect of wall roughness on liquid argon shear viscosity and diffusion coefficient in nanochannels is
studied by non-equilibrium molecular dynamics. Diffusion coefficient results are presented in terms of
average values for the whole channel, as well as profiles of local values calculated in layers along the
channel. It turns out that the local diffusion coefficient decreases significantly in fluid layers adjacent
to the rough wall due to the trapping of fluid atoms inside the rough wall cavities. The degree of anisot-
ropy in the x-, y- and z-components of the diffusion coefficient close to the rough wall increases relative
to the anisotropy observed close to the smooth wall. Stress tensor components as well as local strain rates
are evaluated in order to extract the coefficient of shear viscosity, gs, which presents significant variations
near the rough wall. These results should be taken into consideration when it comes to the design of
nanofluidic devices.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The importance of channel width in channel flows at the nano-
scale has been discussed in great detail in the literature [1–10]. For
small channel widths, the fluid is inhomogeneous near the solid
boundary and Navier–Stokes-based hydrodynamic prediction of
the velocity profile and the no-slip condition break down. Non-
equilibrium molecular dynamics (NEMD) offers an effective alter-
native simulation method for flow systems at the nanoscale and
simultaneously provides a valuable method for the calculation of
transport properties of liquids.

Calculation of the diffusion coefficient of fluids at the nanoscale
for flat-wall nanochannels has been addressed by many research-
ers [11,12]. A useful review on diffusivity issues in slit pores in
[2] shows that mobility is maintained even in pore widths of
2.0r (r is a length-scale parameter depending on interatomic
interactions). In a previous work for argon flow in krypton nano-
channels [13] we found that diffusivity is anisotropic in small
channels with flat walls while isotropic diffusion is reached for
channels of width greater than about 20r. Moreover, diffusion
coefficient is higher in layers close to the center of the channel
and decreases in layers adjacent to the walls. As the channel width
increases bulk-like behavior is approached close to the centerline.

As far as shear viscosity is concerned, a number of computa-
tional studies by equilibrium or non-equilibrium MD have been re-
ported in the literature for flat-wall nanochannels. For systems
close to equilibrium, the Green–Kubo (GK) method is preferred

[13–17], though it demands complex calculations and significant
simulation time in order to give statistically accurate results. How-
ever, in systems confined between solid walls, if one takes into
account the induced strain rates, NEMD methods for the calcula-
tion of shear viscosity are a good alternative [6,7,18–21].

The effect of wall structure on fluid properties is currently an
intriguing subject in the area of nanofluidics. Many researchers
have dealt with the effect of roughness on flow and slip at the
boundary [22–27]. Fluid atom localization near a rough wall is of
particular interest, since there is clear evidence of fluid atom trap-
ping inside the wall interstices, as it was shown in [28], and this is
expected to affect to some degree transport properties of fluids. As
far as diffusion coefficient is concerned, Kim and Darve [29] found
that diffusion coefficient decreases near a rough channel wall in
electro-osmotic flow of water molecules through channels with
rectangular roughness. On the other hand, in [27] it is reported that
fluid viscosity increases as the roughness height increases and as
the roughness period decreases.

It would be of great interest to investigate in detail diffusivity
and shear viscosity issues in channels with walls that present a
kind of structural anomaly, especially in fluid layers adjacent to
those anomalies. In the present work, we simulated liquid argon
flow in a channel with one smooth and one rough wall, where
the rough wall is formed by periodically spaced rectangular protru-
sions. The calculation of the diffusion coefficient and shear viscos-
ity will shed further light on the phenomena occurring and
affecting flow and mass transport close to a rough surface.

The present paper is set up as follows. Section 2 contains the
molecular model and the method of computing transport proper-
ties, while in Section 3 results are presented and discussed. Finally,
Section 4 contains concluding remarks.
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2. Simulation method

2.1. Molecular model

Non-equilibrium molecular dynamics simulations were per-
formed to simulate flow of liquid argon in a channel with krypton
walls. The lower wall of the channel is smooth. The rough upper
wall is constructed by ‘‘adding” extra wall atoms to form periodi-
cally spaced rectangular protrusions (see Fig. 1). We considered
four different cases of upper wall roughness (p = 1, 2, 3 and 6, as
shown schematically in Fig. 1), where p represents the number of
rectangular grooves in the computational domain, i.e., p = 1 signi-
fies one rectangular groove, p = 2 two rectangular grooves, p = 3
three rectangular grooves and p = 6 six rectangular grooves. We re-
fer to the flat-wall nanochannel as case p = 0. The dimensions of
the computational domain in x-, y- and z-directions are Lx � Ly �
Lz = 10.6 � 10.6 � 23 (in units of r which is defined below). Rough-
ness height is about 2r (or, 10% of the channel width) and the pro-
trusion length (and, equivalently, the cavity length) lg equals to Lx/
2p (i.e., lg = 5.3, 2.65, 1.77 and 0.88r for p = 1, 2, 3 and 6,
respectively).

Fluid/fluid, fluid/wall and wall/wall atom interactions are de-
scribed by the Lennard-Jones (LJ) 12-6 potential

uLJðrijÞ ¼ 4e r=rij
� �12 � ðr=rijÞ6
� �

ð1Þ

where the parameters of the Lennard-Jones potential are: rAr–Ar =
0.3405 nm (from now on rAr–Ar will be referred as r), rKr–Kr =
0.3633 nm, rAr–Kr = 0.3519 nm, eAr–Ar/kB = 119.8 K (from now on
will be referred as e), eKr–Kr/kB = 167.0 K, eAr–Kr/kB = 141.4 K, the
atomic mass for argon is mAr = 39.95 a.u. (from now on will be re-
ferred as m), the atomic mass for krypton is mKr = 83.8 a.u. and
the cut-off radius is rc = 2.5r. Periodic boundary conditions are con-
sidered in x- and y-directions. Each rough wall channel consists of
504 wall atoms and 1368 fluid atoms. Wall atoms are bound on
fcc sites and remain approximately at their original positions due
to the effect of an elastic spring force F = �K(r(t) � req), where r(t)
is the vector position of a wall atom at time t, req is its initial lattice
position vector and K = 57.15 (e/r2) is the wall spring constant [18].
Temperature is kept constant at N* = 1 (e/kB, kB is the Boltzmann’s
constant) with the application of appropriate Nosé–Hoover thermo-
stats. An external driving force Fext = 0.01344 (e/r) is applied along
the x-direction to drive the flow.

Nomenclature

D diffusion coefficient, D ¼ DxþDyþDz

3
Dlay diffusion coefficient value in a specific layer along the

channel
Fext external driving force (magnitude)
h channel width
K spring constant
kB Boltzmann constant
Lx length of the computational domain in the x-direction
Ly length of the computational domain in the y-direction
Lz length of the computational domain in the z-direction
lg protrusion or cavity length
m argon atom mass
MSD mean square displacement
N number of atoms
p periodic roughness factor
P microscopic stress tensor
Pkin kinetic part of the stress tensor

Ppot potential energy part of the stress tensor
Poff-diag average of all three independent off-diagonal elements

of the stress tensor, Poff-diag ¼
PxzþPxyþPyz

3
req position of a wall atom on fcc lattice site
ri position vector of atom i
rij distance vector between ith and jth atom
T temperature
ti ith component of atomic velocity, i = 1, 2, 3
u(rij) LJ potential of atom i with atom j
V volume of the computational domain (Lx � Ly � Lz)

Greek symbols
_c shear rate
e energy parameter in the LJ potential
gs shear viscosity
r length parameter in the LJ potential

Fig. 1. Schematic of channel models. Also shown layers used for the calculations of local transport properties. Channel dimensions are �5.3r 6 x 6 5.3r, �5.3r 6 y 6 5.3r
and �11.5r 6 z 6 11.5r.
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The simulation step is Dt = 0.005s (s is in units of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mr2=e

p
). In

the beginning, fluid atoms are given appropriate initial velocities in
order to reach the desired temperature (T* = 1). The system reaches
equilibrium state after a run of 2 � 106 time steps. Then, typically
10 NEMD simulations are performed, each with duration of 5 � 105

time steps, in order to obtain statistically accurate results.

2.2. Computation of transport properties

The diffusion coefficient can be obtained using either Einstein’s
relation

D ¼ lim
t!1

1
2dNt

XN

j¼1

rjðtÞ � rjð0Þ
� �2

* +
ð2Þ

or Green–Kubo’s relation

D ¼ 1
3N

Z 1

0

XN

j¼1

vjð0Þ � vjðtÞ
* +

ð3Þ

where rj is the position vector of the jth atom and d is the dimen-
sionality of the system (d = 1 for diffusivity calculation in one direc-
tion, d = 2 in two directions and d = 3 in three directions) and vj

denotes the velocity vector of the jth atom.
The two relations are equivalent and provide the same results

[1,2]. Relations (2) and (3) are derived for systems in equilibrium,
but they can be used for non-equilibrium systems as well, provided
one excludes the drift contribution from the flow [2]. In the present
work, we have used Einstein’s relation for the calculation of the dif-
fusion coefficient. The computation is carried out in two steps. In
the first step, the mean square displacement (MSD) is obtained
from the definition

MSDðtÞ ¼ 1
N

XN

j¼1

rjðtÞ � rjð0Þ
� �2

* +
ð4Þ

and subsequently D is evaluated based on Eq. (2) which can be writ-
ten as

D ¼ lim
t!1

1
2dt

MSDðtÞ ð5Þ

The channel diffusion coefficient calculated as an average value
over the whole channel region is defined as

Dch ¼ lim
t!1

1
6t

MSDðtÞ ð6Þ

while the channel diffusion coefficient calculated in x-, y- and z-
components, is

Di ¼ lim
t!1

1
2t

MSDiðtÞ ð7Þ

where i = x, y or z, and, finally

Dch ¼
Dx þ Dy þ Dz

3
ð8Þ

Moreover, the channel is divided into n bins (or, layers) in the z-
direction, each one of volume Vlay = Lx � Ly � (h/n) (see Fig. 1), and
the diffusion coefficients are also calculated as local values in these
layers as

Di;lay ¼ lim
t!1

1
2t

MSDi;layðtÞ ð9Þ

where i = x, y or z and n = 6. Notice that MSDi,lay(t) is the local mean
value in every bin. More precisely each atom is taken into account
only for the time that it is located inside the corresponding bin.
When an atom leaves the bin it is not taken into account in the cal-
culation of MSD of this bin, while new atoms that enter the bin are

taken into account in the MSD calculation as long as they remain in-
side the bin.

As a three-component average in each channel layer, the diffu-
sion coefficient is

Dlay ¼
Dx;lay þ Dy;lay þ Dz;lay

3
ð10Þ

Shear viscosity in confined nanochannels can be calculated by
NEMD or Green–Kubo relations. Green–Kubo methods are mainly
used in systems close to or at equilibrium state and they do not take
into account the induced strain rates, while NEMD methods do. In
the present work, NEMD methods have been chosen due to the exis-
tence of wall roughness which affects fluid behavior and induces
non-linear strain rates, as shown in Section 3.

Shear viscosity is also evaluated as local value at various layers
across the z-direction of the channels, each one of volume
Vlay = Lx � Ly � (h/n), where n = 40. Shear viscosity gs(z) across the
z-direction for a pure fluid is computed by the relation

gsðzÞ ¼ lim
Fext!0

�hPxzðzÞi
_cðzÞ

	 

ð11Þ

where the strain rate _cðzÞ is

_cxz ¼
otx

oz
þ otz

ox
ð12Þ

For flat channel walls, the second term in Eq. (12) is negligible
(in the macroscale, the second term in Eq. (12) is identically zero)
thus the first term of Eq. (12) is the dominant one and taken into
account in the calculations. However, since adjacent to the rough
wall, the flow field can be distorted by the cavities, i.e., the fluid
velocity is not parallel to the x-axis we have performed detailed
calculations of the average strain rate components inside the cav-
ity. These calculations showed that otz

ox is a very small part of the
strain rate (less than 8%). Far from the rough wall, differences be-
tween _cxz and otx

oz are even far less significant. Summarizing, the ef-
fect on the calculated viscosity value is small when we neglect the
second term of Eq. (12), even when we are inside the cavity. Thus
the viscosity calculations have been performed taking into account
only the first term in the right-hand side of Eq. (12).

Pxz(z) is the off-diagonal component of the microscopic stress
tensor P, and h���i denotes time-averaged values. Pxz is given by

Pxz ¼
1

Vbin

XN

i¼1

mitx
i t

z
i �

XN

i¼1

XN

j>1

rx
ij
ouðrijÞ

orz
ij

 !
ð13Þ

where u(rij) is the LJ potential of atom i interacting with atom j, rij is
the distance between atoms i and j, and tj

i is the j-component (j = x,
y or z) of the velocity of atom i (the mean flow velocity is subtracted
from tx

i ). The above expression for the stress tensor can be sepa-
rated in a kinetic and a potential energy parts. We denote the ki-
netic part of the stress tensor by Pkin

xz , i.e.,

Pkin
xz ¼

XN

i¼1

mitx
i t

z
i ð14Þ

and the potential energy part by Ppot
xz , i.e.,

Ppot
xz ¼

XN

i¼1

XN

j>1

rx
ij
ouðrijÞ
orz

ij

ð15Þ

With definitions (14) and (15), Eq. (13) can be rewritten as

Pxz ¼
1

Vbin
Pkin

xz � Ppot
xz

� �
ð16Þ

In order to obtain better statistics and more accurate results for
the stress tensor, we calculate all three independent off-diagonal
elements of the stress tensor and average them as suggested in
[30], i.e.,
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Poff-diag ¼
Pxz þ Pxy þ Pyz

3
ð17Þ

Finally, in our computations, Eq. (11) becomes

gsðzÞ ¼ lim
Fext!0

�
Poff-diagðzÞ
� �

_cðzÞ

	 

ð18Þ

3. Results and discussion

3.1. Diffusion coefficient

In order to calculate the diffusion coefficient we need to calcu-
late first the mean square displacement of fluid atoms, according to
Eq. (4), and then evaluate the slope of the corresponding diagrams
following Eq. (5). We present MSDlay diagrams (in six layers, L1–L6,
see Fig. 1) for each rough channel considered in Fig. 2(a)–(d). In
Fig. 2(a), we depict MSDlay for p = 1. We observe that the slopes
of L1 (channel layer adjacent to the lower smooth wall) and L6
(channel layer adjacent to the upper rough wall) are significantly
smaller compared to the respective slopes of the interior channel
layers (L2–L5). This is also the trend for all other rough channels
(Fig. 2(b)–(d)), since MSDlay in all channel layers, except L6, is sim-
ilar in every channel (p = 1, 2, 3 and 6). However, we observe that
the slope at L6 (layer close adjacent to the rough wall) decreases as

p increases and consequently the corresponding diffusion coeffi-
cient values will also decrease.

We present calculated Dlay values in Fig. 3(a). In general, the dif-
fusion coefficient has smaller values in fluid regions close to the so-
lid boundary compared to fluid regions in the interior of the
channel [2,13]. Furthermore, in all our calculations in the present
work, the rate of diffusion is even smaller in fluid layers adjacent
to the rough wall compared to rate close to the smooth wall and
this can be attributed to the fact that a number of fluid atoms
are trapped inside the rectangular cavities [28] and their move-
ment is considerably obstructed. Moreover, as p increases, the dif-
fusion coefficient near the rough wall decreases. This can be
attributed to the fact that the trapping time of fluid atoms inside
the cavities increases as the parameter p increases

The diffusion coefficient component ratio Dz;lay
Dx;lay

(or, equivalently,
Dz;lay
Dy;lay

) is depicted in Fig. 3(b). We observe that although only a slight

anisotropy is present near the smooth wall, near the rough walls,

the ratio Dz;lay
Dx;lay

increases considerably as p increases, and diffusivity

becomes highly anisotropic. This is due to the fact that fluid atom
mobility is reduced inside the roughness cavities [28], which leads
to the reduction of Dx,lay in these regions.

In the diagram of Dch values (see Eq. (8)), in Fig. 4, diffusion
coefficient has a slightly decaying behavior as p increases. This re-
sult is in agreement with the results in [28] and supports the
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Fig. 2. Mean square displacement calculated in layers along the channels for (a) p = 1, (b) p = 2, (c) p = 3 and (d) p = 6.
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observation of increasingly strong trapping of fluid atoms inside
the cavities as p increases from 0 to 6 (i.e., as the length of protru-
sion decreases).

Summarizing, in the present work we simulated a hydrophilic
like surface since the interaction parameters ratio between wall/
fluid atoms is ewall/efluid = 1.2 (see also [10]). In a recent paper
[28] where a similar channel geometry with hydrophilic surfaces
(ewall/efluid = 1.2) was employed, it was found that increasing p re-
sults in increased trapping time of atoms inside the cavities, which
in turn can explain that the resulting MSD of the atoms close to the
rough wall decreases and thus the calculated diffusion coefficient
is reduced. In [28] it was also found that the slip length decreases
as p increases, which is in accordance with the general trend relat-
ing slip length and diffusion coefficient discussed in [31]. On the
other hand, one can reasonably expect that in the case of hydro-
phobic surface walls, a different behavior would be observed since
the hydrophobic interactions would not favor increased trapping
time of atoms, and thus would affect less the MSD of atoms and
the corresponding diffusion coefficient. Thus we believe that, as
mentioned in [31], the surface roughness in combination with
the type of interactions (hydrophibic/hydrophilic) can significantly
affect the fluid behavior as discussed in detail in [31] and worth’s
further research.

3.2. Shear viscosity

To calculate the shear viscosity, we first evaluate the strain rate
_cðzÞ and the stress tensor component Poff-diag(z) in protrusions and
cavities (as average values across z-dimension, see Fig. 5), and then
extract shear viscosity values according to Eq. (11). Furthermore,
we decompose Poff-diag(z) in its kinetic Pkin

off-diag and potential part
Ppot

off-diag according to Eqs. (14) and (15) in order to determine which
component affects more the final result.

We calculate all three off-diagonal stress tensor components
and strain rates for each channel (p = 1, 2, 3 and 6) and present
the results for p = 1 in Fig. 6(a)–(d). In Fig. 6(a) and (b), we present
Pkin

off-diag and Ppot
off-diag, respectively, as functions of z. As far as the ki-

netic part of the stress tensor components Pkin
off-diag

� �
is concerned,

it has clearly smaller values across the channel compared to the
potential component Ppot

off-diag, both at channel cavities and protru-
sions. As a result, the potential part is the one that basically deter-
mines the value of the stress tensor component Poff-diag(z) shown in
Fig. 6(c).

We also observe that near the rough wall protrusions, Ppot
off-diag

presents a sharp increase. This may be attributed to the fact that
the potential energy is higher in these regions compared to chan-
nel regions far from the walls, as shown in [28]. In Fig. 6(d) the
strain rate, _cðzÞ, for p = 1 is depicted. The strain rate would be a lin-
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Fig. 5. Schematic of the p = 1 channel, where it is shown how the spatial averaging
of Poff-diag(z), _cðzÞ and gs(z) is made across the z-direction of the protrusions and
cavities. Similar averaging is done for p = 2, 3 and 6.

F. Sofos et al. / International Journal of Heat and Mass Transfer 53 (2010) 3839–3846 3843



Author's personal copy

ear function of z, if the respective velocity profile is locally para-
bolic [10]. However, in [28] we found that the velocity profile near
a rough wall can not be parabolically fitted for any p value. Conse-
quently, we observe that there exist strong deviation from linearity
for _cðzÞ near the walls and, especially, close to the rough wall. Since
we found that velocity profiles are quite similar both at cavities
and protrusions [28], as a consequence, we also observe that the
strain rate profiles are similar, too.

Applying Eq. (18) to calculated values of Poff-diag(z) and _cðzÞ, we
obtain the shear viscosity profiles shown in Fig. 7(a)–(d), for p = 1,
2, 3 and 6, respectively. The profiles reveal interesting information
on shear viscosity behavior, especially near the rough wall. All pro-
files are not symmetric with respect to plane z = 0 due to the exis-
tence of protrusions. For any z = const., gs at the protrusions is
always greater than gs at the cavities. For p = 1 (Fig. 7(a)), we ob-
serve that shear viscosity presents its lowest values inside the cav-
ities. On the contrary, we obtain the highest shear viscosity values
at the protrusions. This behavior may be attributed to the interac-
tion of the fluid with the walls which at the nanoscale becomes
important, especially in the cavity region, as it was revealed by
the shape of the potential energy maps of the fluid atoms in [28].
For p = 2 (Fig. 7(b)), shear viscosity has similar behavior to p = 1
at the cavities, but with higher values at the protrusions. For
p = 3 and 6 (Fig. 7(c) and (d), respectively) the shear viscosity pro-
files are similar to p = 1.

We present channel shear viscosity as a function of p in Fig. 8.
Shear viscosity values for p = 0 (the smooth or flat-wall channel)
is taken from [13]. We observe that gs is higher for all rough wall
channels compared to the flat-wall channel and, furthermore, the
channel shear viscosity does not increase monotonically as p in-
creases, a behavior also reported in [27].

4. Conclusions

We have presented non-equilibrium molecular dynamics simu-
lations of liquid argon flow in nanochannels characterized by peri-
odic rectangular wall roughness. The effect of protrusion length
(or, equivalently, cavity length) on diffusion coefficient and shear
viscosity is found to be significant and should be taken into ac-
count in the design of nanofluidic systems, since it affects both
flow and mass transfer.

The channel diffusion coefficient, Dch, decreases slightly as cav-
ities become narrower. Moreover, the local diffusion coefficient is
smaller near a rough wall compared to a smooth wall. The pres-
ence of solid walls generally induces anisotropy adjacent to the
walls, but, anisotropy increases near a rough wall. As wall cavities
become narrower, the ratio of local diffusion coefficient compo-
nents Dz;lay

Dx;lay
increases, fluid mobility in the x-direction near the rough

wall decreases, and Dx,lay decreases.
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The calculations of the off-diagonal components of the stress
tensor, as well as the strain rate profiles have been used for the cal-
culation of shear viscosity profiles across each channel studied.
Strain rates are higher close to the rough wall and deviate from a
linear profile, since the respective velocity profiles can not be par-

abolically fitted. Stress tensor components across the channel pro-
trusions have greater values compared to cavities, and, as a result,
shear viscosity profiles present slightly higher values at the protru-
sions. In general, we found that channel shear viscosity is higher in
rough wall nanochannels compared to flat wall.

The existence of wall roughness in almost all real materials,
either due to the atomic localization or due to surface anomalies,
is a feature that has to be studied extensively when it comes to
designing flow systems at the nanoscale with tailored properties.
Depending on the surface, a number of fluid atoms are trapped in-
side the wall interstices and this affects flow properties, shear vis-
cosity and rates of diffusion of liquids.
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